cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202091 Number of partitions of 5n such that cn(1,5) = cn(4,5) and cn(2,5) = cn(3,5).

This page as a plain text file.
%I A202091 #16 Mar 30 2012 17:27:07
%S A202091 1,3,11,32,88,221,532,1213,2672,5676,11724,23568,46315,89076,168124,
%T A202091 311763,569000,1023128,1814776,3178000,5499588,9411392,15938221,
%U A202091 26726372,44402336,73121988,119418609,193488816,311150404,496783420,787753316
%N A202091 Number of partitions of 5n such that cn(1,5) = cn(4,5) and cn(2,5) = cn(3,5).
%C A202091 For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
%H A202091 <a href="/wiki/Partitions_of_5n">Index and properties of sequences related to partitions of 5n</a>
%F A202091 a(n) = A046776(n) + A202086(n) + A202088(n) + 2*( A036886(n) + A036892(n) + A036893(n) + A036894(n) + A036895(n) )
%F A202091 a(n) = A202192(n) + 2*( A036886(n) + A036892(n) + A036893(n) + A036894(n) + A036895(n) )
%Y A202091 Cf. A046776, A036880, A036881, A036882, A036883, A036884, A036885, A036886, A036887, A036888, A036889, A036890, A036891, A036892, A036893, A036894, A036895, A202085, A202086, A202087, A202088
%K A202091 nonn
%O A202091 0,2
%A A202091 _Max Alekseyev_, Dec 11 2011