This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202093 #17 Mar 23 2018 17:36:30 %S A202093 108,324,720,1600,3000,5625,9450,15876,24696,38416,56448,82944,116640, %T A202093 164025,222750,302500,399300,527076,679536,876096,1107288,1399489, %U A202093 1739010,2160900,2646000,3240000,3916800,4734976,5659776,6765201,8005878 %N A202093 Number of (n+2) X 3 binary arrays avoiding patterns 001 and 011 in rows and columns. %C A202093 Column 1 of A202100. %H A202093 R. H. Hardin, <a href="/A202093/b202093.txt">Table of n, a(n) for n = 1..210</a> %F A202093 Empirical: a(n) = 2*a(n-1) +4*a(n-2) -10*a(n-3) -5*a(n-4) +20*a(n-5) -20*a(n-7) +5*a(n-8) +10*a(n-9) -4*a(n-10) -2*a(n-11) +a(n-12). %F A202093 Conjectures from _Colin Barker_, Feb 20 2018: (Start) %F A202093 G.f.: x*(108 + 108*x - 360*x^2 - 56*x^3 + 700*x^4 - 115*x^5 - 680*x^6 + 236*x^7 + 334*x^8 - 155*x^9 - 66*x^10 + 36*x^11) / ((1 - x)^7*(1 + x)^5). %F A202093 a(n) = (n^6 + 28*n^5 + 324*n^4 + 1984*n^3 + 6784*n^2 + 12288*n + 9216) / 256 for n even. %F A202093 a(n) = (n^6 + 28*n^5 + 321*n^4 + 1928*n^3 + 6395*n^2 + 11100*n + 7875) / 256 for n odd. %F A202093 (End) %e A202093 Some solutions for n=10: %e A202093 ..1..1..1....1..1..0....1..1..1....1..1..1....1..1..1....1..0..0....1..0..0 %e A202093 ..1..1..0....1..1..0....1..1..1....1..1..0....0..0..0....1..1..0....1..1..1 %e A202093 ..0..1..0....1..0..0....1..1..1....1..0..0....1..0..1....1..0..0....1..0..0 %e A202093 ..1..1..0....1..1..0....1..1..1....1..1..0....0..0..0....1..1..0....1..1..1 %e A202093 ..0..0..0....1..0..0....1..0..1....0..0..0....1..0..1....1..0..0....1..0..0 %e A202093 ..1..1..0....1..1..0....1..1..1....1..1..0....0..0..0....0..1..0....1..1..1 %e A202093 ..0..0..0....1..0..0....1..0..1....0..0..0....1..0..0....1..0..0....1..0..0 %e A202093 ..0..1..0....1..1..0....1..0..1....1..1..0....0..0..0....0..1..0....1..1..1 %e A202093 ..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....1..0..0....1..0..0 %e A202093 ..0..1..0....1..0..0....0..0..0....0..0..0....0..0..0....0..1..0....1..1..1 %e A202093 ..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....1..0..0....1..0..0 %e A202093 ..0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....0..1..0....0..1..0 %K A202093 nonn %O A202093 1,1 %A A202093 _R. H. Hardin_, Dec 11 2011