A202096 Number of (n+2)X6 binary arrays avoiding patterns 001 and 011 in rows and columns.
1600, 10000, 40000, 160000, 490000, 1500625, 3841600, 9834496, 22127616, 49787136, 101606400, 207360000, 392040000, 741200625, 1317690000, 2342560000, 3958926400, 6690585616, 10837642816, 17555190016, 27429984400, 42859350625
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1..1..1..1..0..1....1..1..1..1..1..1....1..1..1..1..0..0....1..0..1..0..0..0 ..1..1..0..1..0..1....1..1..0..1..0..0....1..0..1..0..0..0....1..1..0..1..0..1 ..1..1..1..1..0..1....0..1..0..1..0..1....1..1..0..0..0..0....1..0..1..0..0..0 ..1..1..0..1..0..1....0..0..0..0..0..0....1..0..0..0..0..0....1..0..0..0..0..0 ..1..1..0..0..0..0....0..1..0..1..0..1....0..1..0..0..0..0....0..0..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 2*a(n-1) +10*a(n-2) -22*a(n-3) -44*a(n-4) +110*a(n-5) +110*a(n-6) -330*a(n-7) -165*a(n-8) +660*a(n-9) +132*a(n-10) -924*a(n-11) +924*a(n-13) -132*a(n-14) -660*a(n-15) +165*a(n-16) +330*a(n-17) -110*a(n-18) -110*a(n-19) +44*a(n-20) +22*a(n-21) -10*a(n-22) -2*a(n-23) +a(n-24)
Comments