A202098 Number of (n+2)X8 binary arrays avoiding patterns 001 and 011 in rows and columns.
5625, 50625, 275625, 1500625, 6002500, 24010000, 77792400, 252047376, 700131600, 1944810000, 4802490000, 11859210000, 26683222500, 60037250625, 125262905625, 261351000625, 512247961225, 1004006004001, 1866953313225, 3471607400625
Offset: 1
Keywords
Examples
Some solutions for n=2 ..1..1..1..0..1..0..1..0....1..1..1..1..1..1..0..1....1..1..1..1..1..1..0..1 ..1..1..1..0..1..0..0..0....1..1..1..1..1..0..0..0....1..1..1..1..1..1..0..1 ..1..1..1..0..1..0..1..0....1..1..1..1..0..1..0..0....0..1..0..0..0..0..0..0 ..0..1..0..0..0..0..0..0....1..1..1..0..0..0..0..0....1..1..1..0..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 2*a(n-1) +14*a(n-2) -30*a(n-3) -90*a(n-4) +210*a(n-5) +350*a(n-6) -910*a(n-7) -910*a(n-8) +2730*a(n-9) +1638*a(n-10) -6006*a(n-11) -2002*a(n-12) +10010*a(n-13) +1430*a(n-14) -12870*a(n-15) +12870*a(n-17) -1430*a(n-18) -10010*a(n-19) +2002*a(n-20) +6006*a(n-21) -1638*a(n-22) -2730*a(n-23) +910*a(n-24) +910*a(n-25) -350*a(n-26) -210*a(n-27) +90*a(n-28) +30*a(n-29) -14*a(n-30) -2*a(n-31) +a(n-32)
Comments