This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202124 #14 Jun 30 2019 20:25:03 %S A202124 3,5,7,7,19,13,9,37,57,19,11,61,153,127,27,13,91,323,475,293,35,15, %T A202124 127,587,1279,1509,663,47,17,169,967,2833,5205,4763,1517,65,19,217, %U A202124 1483,5509,14063,21093,15101,3459,91,21,271,2157,9739,32267,69573,85771,47889,7905 %N A202124 T(n,k) is the number of -k..k arrays of n elements with first, second and third differences also in -k..k. %C A202124 Table starts %C A202124 ...3.....5......7.......9.......11........13........15.........17.........19 %C A202124 ...7....19.....37......61.......91.......127.......169........217........271 %C A202124 ..13....57....153.....323......587.......967......1483.......2157.......3009 %C A202124 ..19...127....475....1279.....2833......5509......9739......16039......25003 %C A202124 ..27...293...1509....5205....14063.....32267.....65773.....122709.....213697 %C A202124 ..35...663...4763...21093....69573....188505....443169.....936715....1822729 %C A202124 ..47..1517..15101...85771...345241...1104357...2993875....7169025...15586785 %C A202124 ..65..3459..47889..348841..1713419...6471075..20229855...54878469..133314467 %C A202124 ..91..7905.151833.1418711..8503671..37917347.136692527..420086101.1140231725 %C A202124 .129.18051.481519.5769945.42203951.222179581.923636217.3215726871.9752442535 %C A202124 For fixed n, T(n,k) is the number of lattice points in k*C(n) where C(n) is a certain polytope in R^n whose vertices have rational coefficients. Therefore row n of the table is an Ehrhart quasi-polynomial of degree <= n. - _Robert Israel_, Jun 28 2019 %H A202124 R. H. Hardin, <a href="/A202124/b202124.txt">Table of n, a(n) for n = 1..7269</a> %H A202124 Wikipedia, <a href="https://en.wikipedia.org/wiki/Ehrhart_polynomial#Ehrhart_quasi-polynomials">Ehrhart quasi-polynomials</a> %e A202124 Some solutions for n=6, k=5: %e A202124 3 2 -1 -5 -3 5 1 4 -2 0 3 4 -3 -3 -3 -5 %e A202124 -2 4 -2 0 -1 5 -3 -1 -2 1 -2 1 2 -4 -4 -4 %e A202124 -5 3 -2 4 1 4 -2 -2 1 3 -5 -1 3 -3 -3 0 %e A202124 -5 -1 -1 4 2 5 2 0 2 3 -4 -3 2 0 1 2 %e A202124 -2 -3 -3 4 4 5 5 2 1 1 -3 -1 1 3 5 3 %e A202124 3 -4 -5 0 5 0 5 5 1 0 0 1 2 2 5 2 %Y A202124 Row 2 is A003215. %Y A202124 Row 3 is A007202. %K A202124 nonn,tabl %O A202124 1,1 %A A202124 _R. H. Hardin_, Dec 11 2011