This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202191 #15 Oct 09 2022 09:25:53 %S A202191 1,1,1,1,2,1,2,3,3,1,3,6,6,4,1,4,11,13,10,5,1,6,18,27,24,15,6,1,9,30, %T A202191 51,55,40,21,7,1,13,50,94,116,100,62,28,8,1,19,81,171,234,231,168,91, %U A202191 36,9,1,28,130,303,460,505,420,266,128,45,10,1,41,208 %N A202191 Triangle T(n,m) = coefficient of x^n in expansion of [x/(1-x-x^3)]^m = sum(n>=m, T(n,m) x^n). %C A202191 Convolution triangle of Narayana's cows sequence A000930. - _Peter Luschny_, Oct 09 2022 %F A202191 T(n,m)=sum(k=0..n-m, binomial(k,(n-m-k)/2)*binomial(m+k-1,m-1)*((-1)^(n-m-k)+1))/2. %e A202191 Triangle T(n, m) starts: %e A202191 [1] 1; %e A202191 [2] 1, 1; %e A202191 [3] 1, 2, 1; %e A202191 [4] 2, 3, 3, 1; %e A202191 [5] 3, 6, 6, 4, 1; %e A202191 [6] 4, 11, 13, 10, 5, 1; %e A202191 [7] 6, 18, 27, 24, 15, 6, 1; %e A202191 [8] 9, 30, 51, 55, 40, 21, 7, 1; %e A202191 [9] 13, 50, 94, 116, 100, 62, 28, 8, 1; %e A202191 . %e A202191 From _R. J. Mathar_, Mar 15 2013: (Start) %e A202191 The matrix inverse starts %e A202191 1; %e A202191 -1,1; %e A202191 1,-2,1; %e A202191 -2,3,-3,1; %e A202191 5,-6,6,-4,1; %e A202191 -11,15,-13,10,-5,1; %e A202191 24,-36,33,-24,15,-6,1; %e A202191 -57,84,-84,63,-40,21,-7,1; %e A202191 141,-204,208,-168,110,-62,28,-8,1. %e A202191 (End) %p A202191 A202191 := proc(n,k) %p A202191 (x/(1-x-x^3))^k ; %p A202191 coeftayl(%,x=0,n) ; %p A202191 end proc: # _R. J. Mathar_, Mar 15 2013 %p A202191 # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left. %p A202191 PMatrix(10, n -> simplify(hypergeom([(2 - n)/3, (3 - n)/3, (1 - n)/3], [(2 - n)/2, (1 - n)/2], -27/4))); # _Peter Luschny_, Oct 09 2022 %o A202191 (Maxima) %o A202191 T(n,m):=sum(binomial(k,(n-m-k)/2)*binomial(m+k-1,m-1)*((-1)^(n-m-k)+1),k,0,n-m)/2; %Y A202191 Cf. A000930. %K A202191 nonn,tabl %O A202191 1,5 %A A202191 _Vladimir Kruchinin_, Dec 14 2011