cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202192 Number of partitions of 5n with equal number of parts congruent to each of 1, 2, 3 and 4 modulo 5.

This page as a plain text file.
%I A202192 #14 May 25 2019 10:20:49
%S A202192 1,1,3,8,22,53,124,269,568,1152,2284,4410,8363,15542,28438,51201,
%T A202192 90930,159300,275740,471706,798388,1337478,2219395,3649432,5950078,
%U A202192 9622364,15442269,24600952,38919910,61164114,95513618,148247892,228761668,351032568,535772894
%N A202192 Number of partitions of 5n with equal number of parts congruent to each of 1, 2, 3 and 4 modulo 5.
%H A202192 Alois P. Heinz, <a href="/A202192/b202192.txt">Table of n, a(n) for n = 0..100</a>
%H A202192 <a href="/wiki/Partitions_of_5n">Index and properties of sequences related to partitions of 5n</a>
%F A202192 a(n) = A046776(n) + A202086(n) + A202088(n).
%F A202192 a(n) = A046787(n) + A000041(n).
%t A202192 mkl[i_, l_] := Module[{ll, mn, x}, ll = If[Mod[i, 5] == 0, l, MapAt[#+1&, l, Mod[i, 5]]]; mn = Min[l] - 1; If[mn <= 0, ll, Map[# - mn&, ll]]];
%t A202192 g[n_, i_, t_] := g[n, i, t] = Module[{m, mx}, If[n < 0, 0, If[n == 0, If[ t[[1]] > 0 && Equal @@ t[[1 ;; 4]], 1, 0] , If[i == 0, 0, If[i < 5, mx = Max[t]; m = n - 10 mx + t[[1]] + 2 t[[2]] + 3 t[[3]] + 4 t[[4]]; If[m >= 0 && Mod[m, 10] == 0, 1, 0], g[n, i-1, t] + g[n-i, i, mkl[i, t]]]]]]];
%t A202192 a[n_] :=  g[5n, 5n, {0, 0, 0, 0}] + PartitionsP[n];
%t A202192 Table[a[n], {n, 0, 34}] (* _Jean-François Alcover_, May 25 2019, after _Alois P. Heinz_ in A046787 *)
%Y A202192 Cf. A046776.
%K A202192 nonn
%O A202192 0,3
%A A202192 _Max Alekseyev_, Dec 14 2011
%E A202192 a(33)-a(34) from _Alois P. Heinz_, May 24 2019