cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202197 Number of (n+2) X 5 binary arrays avoiding patterns 001 and 101 in rows and columns.

Original entry on oeis.org

450, 1400, 3500, 7560, 14700, 26400, 44550, 71500, 110110, 163800, 236600, 333200, 459000, 620160, 823650, 1077300, 1389850, 1771000, 2231460, 2783000, 3438500, 4212000, 5118750, 6175260, 7399350, 8810200, 10428400, 12276000, 14376560
Offset: 1

Views

Author

R. H. Hardin, Dec 14 2011

Keywords

Comments

Column 3 of A202202.

Examples

			Some solutions for n=4:
..1..1..1..0..0....1..1..1..0..0....0..0..0..0..0....0..1..0..0..0
..1..1..1..1..1....1..1..1..1..1....1..1..1..1..1....1..1..1..1..0
..1..1..1..1..1....1..1..1..1..1....1..1..1..1..1....0..1..1..0..0
..0..1..0..0..0....0..1..1..1..1....0..1..1..0..0....0..1..1..0..0
..0..1..0..0..0....0..1..1..1..1....0..0..0..0..0....0..1..1..0..0
..0..0..0..0..0....0..1..1..1..0....0..0..0..0..0....0..1..1..0..0
		

Crossrefs

Cf. A202202.

Formula

Empirical: a(n) = 5*(n+5)*(n+4)*(n+3)*(n+2)^2/12.
Conjectures from Colin Barker, May 27 2018: (Start)
G.f.: 10*x*(45 - 130*x + 185*x^2 - 144*x^3 + 59*x^4 - 10*x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)