This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202200 #11 May 27 2018 11:43:19 %S A202200 1728,7680,26400,76032,192192,439296,926640,1830400,3422848,6110208, %T A202200 10480704,17364480,27907200,43659264,66682704,99677952,146132800, %U A202200 210496000,298378080,416782080,574367040,781747200,1051830000,1400196096 %N A202200 Number of (n+2) X 8 binary arrays avoiding patterns 001 and 101 in rows and columns. %C A202200 Column 6 of A202202. %H A202200 R. H. Hardin, <a href="/A202200/b202200.txt">Table of n, a(n) for n = 1..210</a> %F A202200 Empirical: a(n) = (n+8)*(n+7)*(n+6)*(n+5)*(n+4)*(n+3)*(n+2)^2/315. %F A202200 Conjectures from _Colin Barker_, May 27 2018: (Start) %F A202200 G.f.: 16*x*(108 - 492*x + 1218*x^2 - 1890*x^3 + 1932*x^4 - 1308*x^5 + 567*x^6 - 143*x^7 + 16*x^8) / (1 - x)^9. %F A202200 a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9. %F A202200 (End) %e A202200 Some solutions for n=2: %e A202200 ..1..1..1..1..1..1..1..0....0..1..1..1..1..1..1..1....0..1..1..1..0..0..0..0 %e A202200 ..1..1..1..1..1..0..0..0....1..1..1..1..1..1..0..0....1..0..0..0..0..0..0..0 %e A202200 ..1..1..1..1..0..0..0..0....0..1..1..1..1..0..0..0....1..0..0..0..0..0..0..0 %e A202200 ..0..1..1..0..0..0..0..0....0..1..1..1..0..0..0..0....0..0..0..0..0..0..0..0 %Y A202200 Cf. A202202. %K A202200 nonn %O A202200 1,1 %A A202200 _R. H. Hardin_, Dec 14 2011