A202202 T(n,k)=Number of (n+2)X(k+2) binary arrays avoiding patterns 001 and 101 in rows and columns.
108, 240, 240, 450, 640, 450, 756, 1400, 1400, 756, 1176, 2688, 3500, 2688, 1176, 1728, 4704, 7560, 7560, 4704, 1728, 2430, 7680, 14700, 18144, 14700, 7680, 2430, 3300, 11880, 26400, 38808, 38808, 26400, 11880, 3300, 4356, 17600, 44550, 76032, 90552
Offset: 1
Examples
Some solutions for n=4 k=3 ..0..1..1..1..1....1..1..0..0..0....0..1..0..0..0....0..1..1..1..0 ..1..1..1..1..1....1..1..1..1..1....1..1..1..1..0....1..1..1..0..0 ..1..1..0..0..0....1..1..1..1..1....1..1..1..0..0....0..0..0..0..0 ..1..1..0..0..0....1..1..1..1..1....1..1..1..0..0....0..0..0..0..0 ..0..1..0..0..0....1..0..0..0..0....0..0..0..0..0....0..0..0..0..0 ..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..839
Formula
Empirical: column k is a polynomial of degree k+2
(via factored column polynomials) T(n,k)=2*(k+2)*(n+2)*product{i=2..k+2 : (n+i) } / n!
Comments