cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202202 T(n,k)=Number of (n+2)X(k+2) binary arrays avoiding patterns 001 and 101 in rows and columns.

Original entry on oeis.org

108, 240, 240, 450, 640, 450, 756, 1400, 1400, 756, 1176, 2688, 3500, 2688, 1176, 1728, 4704, 7560, 7560, 4704, 1728, 2430, 7680, 14700, 18144, 14700, 7680, 2430, 3300, 11880, 26400, 38808, 38808, 26400, 11880, 3300, 4356, 17600, 44550, 76032, 90552
Offset: 1

Views

Author

R. H. Hardin Dec 14 2011

Keywords

Comments

Table starts
..108...240....450....756....1176....1728.....2430.....3300.....4356......5616
..240...640...1400...2688....4704....7680....11880....17600....25168.....34944
..450..1400...3500...7560...14700...26400....44550....71500...110110....163800
..756..2688...7560..18144...38808...76032...138996...240240...396396....628992
.1176..4704..14700..38808...90552..192192...378378...700700..1233232...2079168
.1728..7680..26400..76032..192192..439296...926640..1830400..3422848...6110208
.2430.11880..44550.138996..378378..926640..2084940..4375800..8664084..16325712
.3300.17600..71500.240240..700700.1830400..4375800..9724000.20323160..40310400
.4356.25168.110110.396396.1233232.3422848..8664084.20323160.44710952..93117024
.5616.34944.163800.628992.2079168.6110208.16325712.40310400.93117024.203164416

Examples

			Some solutions for n=4 k=3
..0..1..1..1..1....1..1..0..0..0....0..1..0..0..0....0..1..1..1..0
..1..1..1..1..1....1..1..1..1..1....1..1..1..1..0....1..1..1..0..0
..1..1..0..0..0....1..1..1..1..1....1..1..1..0..0....0..0..0..0..0
..1..1..0..0..0....1..1..1..1..1....1..1..1..0..0....0..0..0..0..0
..0..1..0..0..0....1..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
		

Formula

Empirical: column k is a polynomial of degree k+2
(via factored column polynomials) T(n,k)=2*(k+2)*(n+2)*product{i=2..k+2 : (n+i) } / n!