A202212 Triangle read by rows: T(n,k) (1 <= k <= n-1, n >= 2) = d(2*(n-k)-1)*(d(2*n-2)/d(2*(n-k)-2) - d(2*n-3)/d(2*(n-k)-3)), where d = A006882 is the double factorial function.
1, 3, 5, 15, 27, 33, 105, 195, 261, 279, 945, 1785, 2475, 2925, 2895, 10395, 19845, 28035, 34425, 37935, 35685, 135135, 259875, 371385, 465255, 533925, 562275, 509985, 2027025, 3918915, 5644485, 7158375, 8390025, 9218475, 9401805, 8294895, 34459425, 66891825, 96891795, 123898005, 147093975, 165209625, 176067675, 175313565, 151335135, 654729075, 1274998725, 1854727875, 2385808425, 2857013775, 3252014325, 3545408475, 3693650625, 3609649575, 3061162125
Offset: 2
Examples
Triangle begins 1, 3, 5, 15, 27, 33, 105, 195, 261, 279, 945, 1785, 2475, 2925, 2895, 10395, 19845, 28035, 34425, 37935, 35685, 135135, 259875, 371385, 465255, 533925, 562275, 509985, ...
Links
Programs
-
Maple
d:=doublefactorial; a:=(n,k)-> d(2*(n-k)-1)*(d(2*n-2)/d(2*(n-k)-2) - d(2*n-3)/d(2*(n-k)-3)); f:=n->[seq(a(n,k),k=1..n-1)]; for n from 1 to 10 do lprint(f(n)); od:
-
Mathematica
a[n_, k_] := (2*(n-k)-1)!!*((2*n-2)!!/(2*(n-k)-2)!!-(2*n-3)!!/(2*(n-k)-3)!!); Table[a[n, k], {n, 2, 11}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)