cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202212 Triangle read by rows: T(n,k) (1 <= k <= n-1, n >= 2) = d(2*(n-k)-1)*(d(2*n-2)/d(2*(n-k)-2) - d(2*n-3)/d(2*(n-k)-3)), where d = A006882 is the double factorial function.

Original entry on oeis.org

1, 3, 5, 15, 27, 33, 105, 195, 261, 279, 945, 1785, 2475, 2925, 2895, 10395, 19845, 28035, 34425, 37935, 35685, 135135, 259875, 371385, 465255, 533925, 562275, 509985, 2027025, 3918915, 5644485, 7158375, 8390025, 9218475, 9401805, 8294895, 34459425, 66891825, 96891795, 123898005, 147093975, 165209625, 176067675, 175313565, 151335135, 654729075, 1274998725, 1854727875, 2385808425, 2857013775, 3252014325, 3545408475, 3693650625, 3609649575, 3061162125
Offset: 2

Views

Author

N. J. A. Sloane, Dec 14 2011

Keywords

Examples

			Triangle begins
1,
3, 5,
15, 27, 33,
105, 195, 261, 279,
945, 1785, 2475, 2925, 2895,
10395, 19845, 28035, 34425, 37935, 35685,
135135, 259875, 371385, 465255, 533925, 562275, 509985,
...
		

Crossrefs

Edges of triangle are A006882 and A129890.

Programs

  • Maple
    d:=doublefactorial;
    a:=(n,k)-> d(2*(n-k)-1)*(d(2*n-2)/d(2*(n-k)-2) - d(2*n-3)/d(2*(n-k)-3));
    f:=n->[seq(a(n,k),k=1..n-1)];
    for n from 1 to 10 do lprint(f(n)); od:
  • Mathematica
    a[n_, k_] := (2*(n-k)-1)!!*((2*n-2)!!/(2*(n-k)-2)!!-(2*n-3)!!/(2*(n-k)-3)!!); Table[a[n, k], {n, 2, 11}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)