This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202241 #62 Jun 29 2019 03:55:28 %S A202241 1,2,1,1,3,1,0,4,4,1,0,4,8,5,1,0,4,12,13,6,1,0,4,16,25,19,7,1,0,4,20, %T A202241 41,44,26,8,1,0,4,24,61,85,70,34,9,1,0,4,28,85,146,155,104,43,10,1,0, %U A202241 4,32,113,231,301,259,147,53,11,1,0,4,36,145,344,532,560,406,200,64,12,1 %N A202241 Array F(n,m) read by antidiagonals: F(0,m)=1, F(n,0) = A130713(n), and column m+1 is recursively defined as the partial sums of column m. %C A202241 The array F(n,m), beginning with row n=0, is: %C A202241 1, 1, 1, 1, 1, 1, 1, %C A202241 2, 3, 4, 5, 6, 7, 8, %C A202241 1, 4, 8, 13, 19, 26, 34, %C A202241 0, 4, 12, 25, 44, 70, 104, %C A202241 0, 4, 16, 41, 85, 155, 259, %C A202241 0, 4, 20, 61, 146, 301, 560, %C A202241 0, 4, 24, 85, 231, 532, 1092. %C A202241 Columns after A130713, A113311, A008574 have signatures (3,-3,1), (4,-6,4,-1), (5,-10,10,-5,1), (6,-15,20,-15,6,-1) (from A135278(n+3)). %C A202241 Inserting columns of zeros and pushing the columns down, plus alternating sign switches defines the following triangle T(n,2m) = (-1)^(m/2)*F(n-2m,m): %C A202241 1, %C A202241 2 0, %C A202241 1 0 -1, %C A202241 0 0 -3 0, %C A202241 0 0 -4 0 1, %C A202241 0 0 -4 0 4 0, %C A202241 0 0 -4 0 8 0 -1 %C A202241 The row sums in the triangle are (-1)^n*A099838(n). %C A202241 The companion to A201863 is %C A202241 1 %C A202241 1 0 %C A202241 1 0 0 %C A202241 1 0 -2 0 %C A202241 1 0 -4 0 1 %C A202241 1 0 -6 0 5 0 %C A202241 1 0 -8 0 13 0 -2 %C A202241 1 0 -10 0 25 0 -12 0 %C A202241 1 0 -12 0 41 0 -38 0 4 %C A202241 1 0 -14 0 61 0 -88 0 28 0 %C A202241 1 0 -16 0 85 0 -170 0 104 0 -8 %C A202241 5th column: A001844; 7th column: -A035597=-2*A005900(n+1); 9th column: 4*A006325(n+2); 11th column: -8*(1,8,34,104) (from columns 4,5,6,7 of F(n,m)). %C A202241 As a triangular array, this is the Riordan array ((1+x)^2, x/(1-x)). - _Philippe Deléham_, Feb 21 2012 %H A202241 Muniru A Asiru, <a href="/A202241/b202241.txt">Table of n, a(n) for n = 0..5151</a> %F A202241 F(1,m) = m+2. %F A202241 F(2,m) = A034856(m+1). %F A202241 F(3,m) = A000297(m-1). %F A202241 Sum_{m=0..d} F(d-m,m) = A116453(d-3), d >= 3 (antidiagonal sums). %F A202241 As a triangular array T(n,k), 0 <= k <= n, satisfies: T(n,k) = T(n-1,k) + T(n-1,k-1) with T(0,0) = 1, T(1,0) = 2, T(2,0) = 1, T(3,0) = 0. - _Philippe Deléham_, Feb 21 2012 %F A202241 Unsigned diagonals of A267633 (beginning with its main diagonal) appear to be the reverse rows of this entry's triangle beginning with the fourth row. - _Tom Copeland_, Jan 26 2016 %F A202241 T(n,k) = C(n, n-k) + C(n-1, n-k-1) - C(n-2, n-k-2) - C(n-3, n-k-3), where C(n, k) = n!/(k!*(n-k)!) if 0 <= k <= n, otherwise 0. - _Peter Bala_, Mar 20 2018 %e A202241 Triangle T(n,k) begins: %e A202241 1 %e A202241 2, 1 %e A202241 1, 3, 1 %e A202241 0, 4, 4, 1 %e A202241 0, 4, 8, 5, 1 %e A202241 0, 4, 12, 13, 6, 1 %e A202241 0, 4, 16, 25, 19, 7, 1 %e A202241 0, 4, 20, 41, 44, 26, 8, 1 %e A202241 0, 4, 24, 61, 85, 70, 34, 9, 1 %e A202241 0, 4, 28, 85, 146, 155, 104, 43, 10, 1 %e A202241 - _Philippe Deléham_, Feb 21 2012 %p A202241 A130713 := proc(n) %p A202241 if n <= 2 and n >=0 then %p A202241 op(n+1,[1,2,1]) ; %p A202241 else %p A202241 0; %p A202241 end if; %p A202241 end proc: %p A202241 A202241 := proc(n,m) %p A202241 option remember; %p A202241 if n < 0 then %p A202241 0 ; %p A202241 elif m = 0 then %p A202241 A130713(n); %p A202241 else %p A202241 procname(n,m-1)+procname(n-1,m) ; %p A202241 end if; %p A202241 end proc: %p A202241 for d from 0 to 12 do %p A202241 for m from 0 to d do %p A202241 printf("%d,",A202241(d-m,m)) ; %p A202241 end do: %p A202241 end do: # _R. J. Mathar_, Dec 22 2011 %p A202241 C := proc (n, k) if 0 <= k and k <= n then factorial(n)/(factorial(k)*factorial(n-k)) else 0 end if end proc: %p A202241 for n from 0 to 10 do %p A202241 seq(C(n, n-k) + C(n-1, n-k-1) - C(n-2, n-k-2) - C(n-3, n-k-3), k = 0..n); %p A202241 end do; # _Peter Bala_, Mar 20 2018 %t A202241 rows = 12; %t A202241 T[0] = PadRight[{1, 2, 1}, rows]; %t A202241 T[n_ /; n<rows] := Accumulate[T[n-1]]; %t A202241 A = Array[T, rows, 0] // Transpose; %t A202241 F[n_ /; n<rows, m_ /; m<rows] := A[[n+1, m+1]]; %t A202241 Table[F[n-m, m], {n, 0, rows-1}, {m, 0, n}] (* _Jean-François Alcover_, Jun 29 2019 *) %o A202241 (Sage) %o A202241 def Trow(n): return [binomial(n, n-k) + binomial(n-1, n-k-1) - binomial(n-2, n-k-2) - binomial(n-3, n-k-3) for k in (0..n)] %o A202241 for n in (0..9): print(Trow(n)) # _Peter Luschny_, Mar 21 2018 %o A202241 (GAP) Flat(List([0..12],n->List([0..n],k->Binomial(n,n-k)+Binomial(n-1,n-k-1)-Binomial(n-2,n-k-2)-Binomial(n-3,n-k-3)))); # _Muniru A Asiru_, Mar 22 2018 %Y A202241 Cf. A130713 (column 0), A113311 (column 1), A008574 (column 2), A001844 (column 3), A005900 (column 4), A006325 (column 5), A033455 (column 6). %Y A202241 Cf. A267633. %K A202241 nonn,tabl,easy %O A202241 0,2 %A A202241 _Paul Curtz_, Dec 16 2011