cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202256 Number of zero-sum -n..n arrays of 6 elements with adjacent element differences also in -n..n.

Original entry on oeis.org

33, 387, 2003, 6963, 18841, 43293, 88301, 164873, 287151, 473293, 745359, 1130441, 1660283, 2372685, 3310839, 4525059, 6071723, 8015439, 10427561, 13388757, 16987109, 21321159, 26497455, 32634197, 39858185, 48309035, 58135563, 69500619
Offset: 1

Views

Author

R. H. Hardin Dec 14 2011

Keywords

Comments

Row 6 of A202252

Examples

			Some solutions for n=7
..6...-7...-5...-5....2....6....2...-1...-1....0...-6...-4....5....1....1...-6
..0....0....1....2...-1....1...-3...-5...-2...-4...-5...-5....4....0....2...-7
.-3....4....2...-2....6....0...-1...-1....0....1....2...-2...-2...-3...-1...-1
.-3....6....1....3...-1...-3...-1....1....3....1....1....5...-6....1....3....4
.-1....2....3....0...-6...-1....1....4....0...-1....5....4...-4....1....1....6
..1...-5...-2....2....0...-3....2....2....0....3....3....2....3....0...-6....4
		

Formula

Empirical: a(n) = 2*a(n-2) +2*a(n-3) -3*a(n-5) -3*a(n-6) -2*a(n-7) +a(n-8) +4*a(n-9) +4*a(n-10) +a(n-11) -2*a(n-12) -3*a(n-13) -3*a(n-14) +2*a(n-16) +2*a(n-17) -a(n-19).
Empirical: G.f. -x*(-33 -387*x -1937*x^2 -6123*x^3 -14061*x^4 -25460*x^5 -37953*x^6 -47841*x^7 -51602*x^8 -47844*x^9 -37956*x^10 -25461*x^11 -14061*x^12 -6120*x^13 -1935*x^14 -387*x^15 -35*x^16 -x^17+x^18) / ( (x^2+1) *(x^4+x^3+x^2+x+1) *(1+x+x^2)^2 *(1+x)^3 *(x-1)^6 ). - R. J. Mathar, Dec 15 2011