This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202261 #42 May 31 2020 22:21:49 %S A202261 1,1,1,3,7,18,51,155,486,1555,5095,17038,57801,198471,689039,2415043, %T A202261 8534022,30375188,108815273,392076629,1420064031,5167575997, %U A202261 18885299641,69287981666,255121926519,942474271999,3492314839349,12977225566680,48349025154154 %N A202261 Number of n-element subsets that can be chosen from {1,2,...,2*n} having element sum n^2. %C A202261 a(n) is the number of partitions of n^2 into n distinct parts <= 2*n. %C A202261 Taking the complement of each set, a(n) is also the number of partitions of n^2+n into n distinct parts <= 2*n. - _Franklin T. Adams-Watters_, Jan 20 2012 %C A202261 Also the number of partitions of n*(n+1)/2 into at most n parts of size at most n. a(4) = 7: 433, 442, 3322, 3331, 4222, 4321, 4411. - _Alois P. Heinz_, May 31 2020 %H A202261 Alois P. Heinz, <a href="/A202261/b202261.txt">Table of n, a(n) for n = 0..200</a> %F A202261 a(n) ~ sqrt(3) * 4^n / (Pi * n^2). - _Vaclav Kotesovec_, Sep 10 2014 %e A202261 a(0) = 1: {}. %e A202261 a(1) = 1: {1}. %e A202261 a(2) = 1: {1,3}. %e A202261 a(3) = 3: {1,2,6}, {1,3,5}, {2,3,4}. %e A202261 a(4) = 7: {1,2,5,8}, {1,2,6,7}, {1,3,4,8}, {1,3,5,7}, {1,4,5,6}, {2,3,4,7},{2,3,5,6}. %p A202261 b:= proc(n, i, t) option remember; %p A202261 `if`(i<t or n<t*(t+1)/2 or n>t*(2*i-t+1)/2, 0, %p A202261 `if`(n=0, 1, b(n, i-1, t) +`if`(n<i, 0, b(n-i, i-1, t-1)))) %p A202261 end: %p A202261 a:= n-> b(n^2, 2*n, n): %p A202261 seq(a(n), n=0..30); %t A202261 b[n_, i_, t_] := b[n, i, t] = If[i<t || n<t*(t+1)/2 || n>t*(2*i-t+1)/2, 0, If[n == 0, 1, b[n, i-1, t] + If[n<i, 0, b[n-i, i-1, t-1]]]]; a[n_] = b[n^2, 2*n, n]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Feb 05 2015, after _Alois P. Heinz_ *) %Y A202261 Column k=1 of A185282. %Y A202261 Cf. A000217, A000290, A107379, A204459. %K A202261 nonn %O A202261 0,4 %A A202261 _Alois P. Heinz_, Jan 20 2012