cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202303 Drop the last digit of A023110(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 16, 25, 36, 144, 324, 1849, 6400, 23716, 36481, 51984, 207936, 467856, 2666689, 9229444, 34199104, 52606009, 74960964, 299843856, 674648676, 3845364121, 13308852496, 49315084900, 75857828929, 108093658176, 432374632704, 972842923584, 5545012396225, 19191356070436, 71112318227344, 109386936710041, 155870980128900, 623483920515600, 1402838821160100
Offset: 1

Views

Author

N. J. A. Sloane, Jan 12 2012

Keywords

Comments

By definition, all the terms are squares.

References

  • R. K. Guy, Neg and Reg, preprint, Jan 2012.

Crossrefs

Cf. A023110. The square roots are in A031150.

Formula

Conjecture: a(n) = 1443*a(n-7)-1443*a(n-14)+a(n-21). - Colin Barker, Sep 20 2014
Empirical g.f.: -x^5*(x +1)*(x^16 +3*x^15 +13*x^14 +12*x^13 +312*x^12 -168*x^11 +204*x^10 +202*x^9 +426*x^8 +202*x^7 +204*x^6 +120*x^5 +24*x^4 +12*x^3 +13*x^2 +3*x +1) / ((x -1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)*(x^14 -1442*x^7 +1)). - Colin Barker, Sep 20 2014

Extensions

Fourth leading 0 inserted by Georg Fischer, Feb 21 2022