This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202324 #14 Nov 21 2024 15:37:52 %S A202324 2,9,4,7,5,3,0,9,0,2,5,4,2,2,8,5,1,2,7,5,9,0,1,2,6,3,8,8,7,1,3,9,8,1, %T A202324 6,4,1,4,4,5,8,0,0,7,6,4,5,3,9,9,6,8,9,0,4,8,9,6,6,1,8,2,8,6,6,9,1,5, %U A202324 6,3,9,3,7,8,3,2,2,1,1,0,0,2,3,9,5,4,7,7,7,6,5,5,4,3,8,9,1,5,3 %N A202324 Decimal expansion of x < 0 satisfying x + 3 = exp(x). %C A202324 See A202320 for a guide to related sequences. The Mathematica program includes a graph. %H A202324 G. C. Greubel, <a href="/A202324/b202324.txt">Table of n, a(n) for n = 1..10000</a> %H A202324 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A202324 Equals -3 - LambertW(-exp(-3)). - _G. C. Greubel_, Nov 09 2017 %e A202324 x < 0: -2.9475309025422851275901263887139816414... %e A202324 x > 0: 1.50524149579288336699862443213735394007... %t A202324 u = 1; v = 3; %t A202324 f[x_] := u*x + v; g[x_] := E^x %t A202324 Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}] %t A202324 r = x /. FindRoot[f[x] == g[x], {x, -2, -1}, WorkingPrecision -> 110] %t A202324 RealDigits[r] (* A202324 *) %t A202324 r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] %t A202324 RealDigits[r] (* A202325 *) %t A202324 RealDigits[-3 - LambertW[-Exp[-3]], 10, 100][[1]] (* _G. C. Greubel_, Nov 09 2017 *) %o A202324 (PARI) solve(x=-3, 0, x+3-exp(x)) \\ _Michel Marcus_, Nov 09 2017 %Y A202324 Cf. A202320. %K A202324 nonn,cons %O A202324 1,1 %A A202324 _Clark Kimberling_, Dec 16 2011