This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202325 #15 Feb 07 2025 16:44:07 %S A202325 1,5,0,5,2,4,1,4,9,5,7,9,2,8,8,3,3,6,6,9,9,8,6,2,4,4,3,2,1,3,7,3,5,3, %T A202325 9,4,0,0,7,6,8,4,3,5,6,0,1,9,0,2,1,9,8,1,1,6,4,3,7,9,4,4,0,9,2,4,6,7, %U A202325 9,9,9,0,3,9,9,2,5,4,5,0,8,0,7,1,7,4,7,1,0,9,0,4,4,2,2,2,2,7,4 %N A202325 Decimal expansion of x > 0 satisfying x + 3 = exp(x). %C A202325 See A202320 for a guide to related sequences. The Mathematica program includes a graph. %H A202325 G. C. Greubel, <a href="/A202325/b202325.txt">Table of n, a(n) for n = 1..10000</a> %H A202325 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %e A202325 x < 0: -2.9475309025422851275901263887139816414... %e A202325 x > 0: 1.50524149579288336699862443213735394007... %t A202325 u = 1; v = 3; %t A202325 f[x_] := u*x + v; g[x_] := E^x %t A202325 Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}] %t A202325 r = x /. FindRoot[f[x] == g[x], {x, -2, -1}, WorkingPrecision -> 110] %t A202325 RealDigits[r] (* A202324 *) %t A202325 r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] %t A202325 RealDigits[r] (* A202325 *) %t A202325 RealDigits[-3 - LambertW[-1, -Exp[-3]], 10, 100][[1]] (* _G. C. Greubel_, Nov 09 2017 *) %o A202325 (PARI) solve(x=0, 2, x+3-exp(x)) \\ _Michel Marcus_, Nov 09 2017 %Y A202325 Cf. A202320. %K A202325 nonn,cons %O A202325 1,2 %A A202325 _Clark Kimberling_, Dec 16 2011