A202329 Number of (n+1)X(n+1) binary arrays with consecutive windows of two bits considered as a binary number nondecreasing in every row and column.
16, 48, 162, 576, 2102, 7790, 29174, 110112, 418134, 1595622, 6113746, 23505358, 90633802, 350351642, 1357278302, 5268292832, 20483876822, 79765662902, 311038321442, 1214362277702, 4746455801882, 18570960418922, 72728638093802
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..0..0..1....0..0..0..0..1..0....0..0..0..0..1..0....0..0..0..0..0..1 ..0..0..0..0..0..1....0..0..0..0..1..1....0..0..0..0..1..0....0..0..0..0..0..1 ..0..0..0..0..0..1....0..0..0..0..1..1....0..0..1..1..1..1....0..0..0..0..0..1 ..0..0..0..0..0..1....0..0..1..1..1..1....0..0..1..1..1..1....0..0..0..0..1..1 ..0..0..0..1..1..1....0..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..1..1 ..0..1..1..1..1..1....1..1..1..1..1..1....0..0..1..1..1..1....1..1..1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..71
Formula
Empirical: (n+1)*(27*n-40)*a(n) = (135*n^2-123*n-100)*a(n-1) - 2*(54*n^2-63*n-10)*a(n-2) - 8*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 19 2012
Another recurrence (empirical): (n+1)*(9*n^2-19*n+8)*a(n) = (45*n^3-68*n^2-13*n+20)*a(n-1) - 2*(2*n-3)*(9*n^2-n-2)*a(n-2). - Vaclav Kotesovec, Oct 26 2012
Comments