This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202345 #14 Nov 21 2024 15:38:12 %S A202345 7,6,8,0,3,9,0,4,7,0,1,3,4,6,5,5,6,5,2,5,5,6,8,3,5,2,6,0,7,7,5,4,7,9, %T A202345 9,0,9,0,6,8,4,9,1,4,8,8,7,1,9,1,8,1,9,4,5,1,0,3,1,0,3,2,7,2,4,8,3,7, %U A202345 8,8,9,0,1,2,7,6,2,3,4,2,0,7,0,9,1,4,5,1,3,9,0,2,0,3,3,9,5,2,6 %N A202345 Decimal expansion of x < 0 satisfying 2*x + 2 = exp(x). %C A202345 See A202320 for a guide to related sequences. The Mathematica program includes a graph. %H A202345 G. C. Greubel, <a href="/A202345/b202345.txt">Table of n, a(n) for n = 0..10000</a> %H A202345 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A202345 Equals -1 - lambertw(-exp(-1)/2). - _G. C. Greubel_, Nov 09 2017 %e A202345 x<0: -0.76803904701346556525568352607754... %e A202345 x>0: 1.678346990016660653412884512094523... %t A202345 u = 2; v = 2; %t A202345 f[x_] := u*x + v; g[x_] := E^x %t A202345 Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}] %t A202345 r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110] %t A202345 RealDigits[r] (* A202345 *) %t A202345 r = x /. FindRoot[f[x] == g[x], {x, 1.6, 1.7}, WorkingPrecision -> 110] %t A202345 RealDigits[r] (* A202346 *) %t A202345 RealDigits[-1 - LambertW[-Exp[-1]/2], 10, 100][[1]] (* _G. C. Greubel_, Nov 09 2017 *) %o A202345 (PARI) solve(x=-1, 0, 2*x+2-exp(x)) \\ _Michel Marcus_, Nov 09 2017 %Y A202345 Cf. A202320. %K A202345 nonn,cons %O A202345 0,1 %A A202345 _Clark Kimberling_, Dec 17 2011