This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202348 #24 Nov 21 2024 15:32:00 %S A202348 1,5,8,5,9,4,3,3,9,5,6,3,0,3,9,3,6,2,1,5,3,3,9,5,3,4,1,9,8,7,5,1,3,8, %T A202348 9,3,9,4,9,6,2,8,6,8,5,6,2,2,3,6,0,3,3,0,4,3,5,1,4,9,9,1,0,4,5,1,8,1, %U A202348 5,9,1,8,7,8,1,6,8,2,9,9,9,4,8,9,6,5,4,3,2,8,3,0,8,6,9,5,9,8,3 %N A202348 Decimal expansion of x satisfying x = exp(x-2). %C A202348 For many choices of u and v, there is just one value of x satisfying x = exp(u*x+v). Guide to related sequences, with graphs included in Mathematica programs: %C A202348 u v x %C A202348 ----- -- ------- %C A202348 1 -2 A202348 %C A202348 1 -3 A202494 %C A202348 -1 -1 A202357 %C A202348 -1 -2 A202496 %C A202348 -2 -2 A202497 %C A202348 -2 0 A202498 %C A202348 -3 0 A202499 %C A202348 -Pi 0 A202500 %C A202348 -Pi/2 0 A202501 %C A202348 -2*Pi -1 A202495 %C A202348 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v) = 0. We call the graph of z = g(u,v) an implicit surface of f. %C A202348 For an example related to this sequence, take f(x,u,v) = x - exp(u*x+v) and g(u,v) = a nonzero solution x of f(x,u,v) = 0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section. %C A202348 Actually there are two solutions to x = exp(x-2). This sequence gives the lesser one, x = -LambertW(-exp(-2)), and A226572 gives the greater one, x = -LambertW(-1,-exp(-2)) = 3.14619322062... - _Jianing Song_, Dec 30 2018 %H A202348 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A202348 Equals -LambertW(-exp(-2)) = 2 - A202320. - _Jianing Song_, Dec 30 2018 %e A202348 x = 0.158594339563039362153395341987513893949... %t A202348 (* Program 1: A202348 *) %t A202348 u = 1; v = -2; %t A202348 f[x_] := x; g[x_] := E^(u*x + v) %t A202348 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] %t A202348 r = x /. FindRoot[f[x] == g[x], {x, .15, .16}, WorkingPrecision -> 110] %t A202348 RealDigits[r] (* A202348 *) %t A202348 (* Program 2: implicit surface of x=e^(ux+v) *) %t A202348 f[{x_, u_, v_}] := x - E^(u*x + v); %t A202348 t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .1, .3}]}, {v, 1, 5}, {u, -5, -.1}]; %t A202348 ListPlot3D[Flatten[t, 1]] (* for A202348 *) %t A202348 RealDigits[-ProductLog[-1/E^2], 10, 99] // First (* _Jean-François Alcover_, Feb 26 2013 *) %o A202348 (PARI) solve(x=0,1,exp(x-2)-x) \\ _Charles R Greathouse IV_, Feb 26 2013 %Y A202348 Cf. A202320, A226572. %K A202348 nonn,cons %O A202348 0,2 %A A202348 _Clark Kimberling_, Dec 20 2011 %E A202348 Digits from a(93) on corrected by _Jean-François Alcover_, Feb 26 2013