This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202363 #22 Nov 22 2023 15:38:18 %S A202363 1,6,3,36,24,12,240,180,120,60,1800,1440,1080,720,360,15120,12600, %T A202363 10080,7560,5040,2520,141120,120960,100800,80640,60480,40320,20160, %U A202363 1451520,1270080,1088640,907200,725760,544320,362880,181440,16329600,14515200,12700800,10886400,9072000,7257600,5443200,3628800,1814400 %N A202363 Triangular array read by rows: T(n,k) is the number of inversion pairs ( p(i) < p(j) with i>j ) that are separated by exactly k elements in all n-permutations (where the permutation is represented in one line notation); n>=2, 0<=k<=n-2. %C A202363 Row sums = A001809. %C A202363 Column for k = 0 is A001286. %H A202363 Alois P. Heinz, <a href="/A202363/b202363.txt">Rows n = 2..142, flattened</a> %F A202363 E.g.f.: x^2/2 * (1/(1-x)^2)* (1/(1-y*x)). %e A202363 T(3,1) = 3 because from the permutations (given in one line notation): (2,3,1), (3,1,2), (3,2,1) we have respectively 3 inversion pairs (1,2), (2,3) and (1,3) which are all separated by 1 element. %e A202363 Triangle T(n,k) begins: %e A202363 1; %e A202363 6, 3; %e A202363 36, 24, 12; %e A202363 240, 180, 120, 60; %e A202363 1800, 1440, 1080, 720, 360; %e A202363 15120, 12600, 10080, 7560, 5040, 2520; %e A202363 141120, 120960, 100800, 80640, 60480, 40320, 20160; %e A202363 ... %t A202363 nn=10;Range[0,nn]!CoefficientList[Series[x^2/2/(1-x)^2/(1-y x),{x,0,nn}],{x,y}]//Grid %Y A202363 Cf. A001286, A001809, A055303. %K A202363 nonn,tabl %O A202363 2,2 %A A202363 _Geoffrey Critzer_, Jan 09 2013