This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202367 #30 Apr 07 2023 09:27:49 %S A202367 1,6,360,45360,5443200,359251200,5884534656000,35307207936000, %T A202367 144053408378880000,1034591578977116160000,3414152210624483328000000, %U A202367 471153005066178699264000000,15434972445968014187888640000000,92609834675808085127331840000000,161141112335906068121557401600000000 %N A202367 LCM of denominators of the coefficients of polynomials Q^(2)_m(n) defined by the recursion Q^(2)_0(n)=1; for m >= 1, Q^(2)_m(n) = Sum_{i=1..n} i^2*Q^(2)_(m-1)(i). %C A202367 See comment in A175669. %H A202367 Maiyu Diaz, <a href="https://arxiv.org/abs/2010.13645">Asymptotics on a class of Legendre formulas</a>, arXiv:2010.13645 [math.NT], 2020. %H A202367 Wataru Takeda, <a href="https://arxiv.org/abs/2304.02946">On the Bhargava factorial of polynomial maps</a>, arXiv:2304.02946 [math.NT], 2023. Mentions this sequence. %F A202367 Conjecture: a(n) = Product_{primes p} p^(Sum_{k>=0} floor((n-1)/(ceiling((p-1)/2)*p^k))). %F A202367 If the conjecture is true, then, for n >= 0, A007814(a(n+1)) = A007814(n!) + n. %Y A202367 Cf. A007814, A053657, A175669. %K A202367 nonn %O A202367 1,2 %A A202367 _Vladimir Shevelev_ and _Peter J. C. Moses_, Dec 18 2011