cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202390 Triangle T(n,k), read by rows, given by (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

This page as a plain text file.
%I A202390 #13 Aug 19 2025 20:53:19
%S A202390 1,1,1,1,3,2,1,6,8,3,1,10,21,17,5,1,15,45,58,35,8,1,21,85,154,144,68,
%T A202390 13,1,28,147,350,452,330,129,21,1,36,238,714,1195,1198,719,239,34,1,
%U A202390 45,366,1344,2799,3611,2959,1506,436,55
%N A202390 Triangle T(n,k), read by rows, given by (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
%C A202390 T(n,n) = Fibonacci(n+1) = A000045(n+1).
%C A202390 A202390 is jointly generated with A208340 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+x*v(n-1)x and v(n,x)=(x+1)*u(n-1,x)+(x+1)v(n-1,x). The alternating row sums of A202390, and also A208340, are 0 except for the first one. See the Mathematica section. - _Clark Kimberling_, Feb 27 2012
%F A202390 T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k-2) - T(n-2,k) with T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if n<k.
%F A202390 G.f.: (1-x)/(1-(2+y)*x+(1-y^2)*x^2).
%F A202390 Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n*A108411(n), A000007(n), A000012(n), A025192(n), A122558(n) for x = -2, -1, 0, 1, 2 respectively.
%e A202390 Triangle begins:
%e A202390   1
%e A202390   1, 1
%e A202390   1, 3, 2
%e A202390   1, 6, 8, 3
%e A202390   1, 10, 21, 17, 5
%e A202390   1, 15, 45, 58, 35, 8
%e A202390   1, 21, 85, 154, 144, 68, 13
%e A202390   1, 28, 147, 350, 452, 330, 129, 21
%t A202390 u[1, x_] := 1; v[1, x_] := 1; z = 13;
%t A202390 u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
%t A202390 v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x];
%t A202390 Table[Expand[u[n, x]], {n, 1, z/2}]
%t A202390 Table[Expand[v[n, x]], {n, 1, z/2}]
%t A202390 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t A202390 TableForm[cu]
%t A202390 Flatten[%]  (* A202390 *)
%t A202390 Table[Expand[v[n, x]], {n, 1, z}]
%t A202390 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t A202390 TableForm[cv]
%t A202390 Flatten[%]  (* A208340 *)
%t A202390 Table[u[n, x] /. x -> 1, {n, 1, z}]  (*row sums*)
%t A202390 Table[u[n, x] /. x -> -1, {n, 1, z}] (*alt. row sums*)
%Y A202390 Cf. A000012, A000217, A051744, A000045, A123585, A208340.
%K A202390 nonn,tabl,changed
%O A202390 0,5
%A A202390 _Philippe Deléham_, Dec 18 2011