This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202392 #18 Feb 07 2025 16:44:07 %S A202392 2,5,7,6,2,7,6,5,3,0,4,9,7,3,6,7,0,4,2,8,2,9,1,6,2,0,1,6,2,6,0,9,7,7, %T A202392 9,0,9,0,9,6,9,2,6,4,7,5,0,3,2,0,4,4,9,1,5,3,3,9,5,1,1,4,4,0,6,6,3,1, %U A202392 9,1,2,9,2,7,5,2,0,4,3,7,2,4,5,9,6,3,9,8,8,7,9,3,4,1,0,0,2,5,0 %N A202392 Decimal expansion of the number x satisfying 3x=exp(-x). %C A202392 See A202322 for a guide to related sequences. The Mathematica program includes a graph. %H A202392 G. C. Greubel, <a href="/A202392/b202392.txt">Table of n, a(n) for n = 0..5000</a> %H A202392 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %e A202392 x=0.257627653049736704282916201626097790909692... %t A202392 u = 3; v = 0; %t A202392 f[x_] := u*x + v; g[x_] := E^-x %t A202392 Plot[{f[x], g[x]}, {x, 0, 1}, {AxesOrigin -> {0, 0}}] %t A202392 r = x /. FindRoot[f[x] == g[x], {x, .25, .26}, WorkingPrecision -> 110] %t A202392 RealDigits[r] (* A202392 *) %t A202392 (* other program *) %t A202392 RealDigits[ ProductLog[1/3], 10, 99] // First (* _Jean-François Alcover_, Feb 14 2013 *) %o A202392 (PARI) lambertw(1/3) \\ _G. C. Greubel_, Jun 10 2017 %Y A202392 Cf. A202322. %K A202392 nonn,cons %O A202392 0,1 %A A202392 _Clark Kimberling_, Dec 18 2011