cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202395 Triangle T(n,k), read by rows, given by (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

This page as a plain text file.
%I A202395 #6 Feb 22 2013 14:40:24
%S A202395 1,1,1,2,4,2,5,13,11,3,13,40,46,24,5,34,120,172,128,50,8,89,354,603,
%T A202395 572,319,98,13,233,1031,2025,2311,1651,733,187,21,610,2972,6592,8740,
%U A202395 7548,4324,1600,348,34
%N A202395 Triangle T(n,k), read by rows, given by (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
%C A202395 T(n,n) = Fibonacci(n+1) = A000045(n+1).
%F A202395 T(n,k) = 3*T(n-1,k) + T(n-1,k-1) + T(n-2,k-2) - T(n-2,k) with T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if n<k.
%F A202395 G.f.: (1-2*x)/(1-(3+y)*x+(1-y^2)*x^2).
%F A202395 Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A001519(n), A081294(n), A180036(n) for x = -1, 0, 1, 2 respectively.
%e A202395 Triangle begins :
%e A202395 1
%e A202395 1, 1
%e A202395 2, 4, 2
%e A202395 5, 13, 11, 3
%e A202395 13, 40, 46, 24, 5
%e A202395 34, 120, 172, 128, 50, 8
%e A202395 89, 354, 603, 572, 319, 98, 13
%Y A202395 Cf. A000045, A001519, A123585, A202389, A202390,
%K A202395 nonn,tabl
%O A202395 0,4
%A A202395 _Philippe Deléham_, Dec 18 2011