cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A202399 Number of (n+2)X3 binary arrays avoiding patterns 000 and 010 in rows and columns.

Original entry on oeis.org

126, 441, 1785, 7225, 27880, 107584, 422136, 1656369, 6459453, 25190361, 98462742, 384865924, 1503033070, 5869858225, 22931405805, 89584680249, 349930588752, 1366878986496, 5339482693488, 20857790423089, 81475946359561
Offset: 1

Views

Author

R. H. Hardin Dec 19 2011

Keywords

Comments

Column 1 of A202406

Examples

			Some solutions for n=5
..1..0..1....1..1..1....1..1..0....0..1..1....0..1..1....1..1..1....1..1..0
..1..1..0....0..1..1....1..1..1....1..0..0....0..1..1....0..1..1....1..1..1
..0..1..1....1..1..1....1..0..1....1..0..1....1..1..1....1..0..0....0..0..1
..0..1..1....1..1..1....1..0..1....1..1..1....1..0..1....1..0..1....1..1..1
..1..1..1....0..0..1....1..1..1....0..1..1....1..0..0....0..1..1....1..1..1
..1..0..1....1..0..1....0..1..1....1..1..0....0..1..1....1..1..0....1..0..1
..1..1..0....1..1..0....0..0..1....1..0..0....0..1..1....1..0..1....0..1..1
		

Formula

Empirical: a(n) = 2*a(n-1) -a(n-2) +18*a(n-3) +44*a(n-4) +38*a(n-5) +80*a(n-6) -80*a(n-8) -38*a(n-9) -44*a(n-10) -18*a(n-11) +a(n-12) -2*a(n-13) +a(n-14)

A202398 Number of (n+2)X(n+2) binary arrays avoiding patterns 000 and 010 in rows and columns.

Original entry on oeis.org

126, 2401, 127449, 15752961, 4005967518, 2318785835536, 3110996570522302, 9451749722490696481, 64095230140132556496075, 982649737574821713976177041, 34173066616707050608156373933550, 2685436434473477364838752750506250000
Offset: 1

Views

Author

R. H. Hardin Dec 19 2011

Keywords

Comments

Diagonal of A202406

Examples

			Some solutions for n=2
..1..0..0..1....0..1..1..1....1..1..0..1....1..1..0..1....0..1..1..1
..1..1..0..1....1..1..1..0....1..1..0..1....1..0..0..1....1..1..1..1
..0..1..1..1....1..1..1..1....0..1..1..0....0..0..1..1....1..1..1..0
..1..1..1..1....1..1..1..1....0..0..1..1....0..1..1..1....1..1..1..1
		

A202400 Number of (n+2) X 4 binary arrays avoiding patterns 000 and 010 in rows and columns.

Original entry on oeis.org

441, 2401, 14161, 83521, 485809, 2825761, 16475481, 96059601, 559842921, 3262808641, 19017237409, 110841719041, 646031745121, 3765342321601, 21946029946281, 127910874833361, 745519173814809, 4345203949621921
Offset: 1

Views

Author

R. H. Hardin, Dec 19 2011

Keywords

Comments

Column 2 of A202406.

Examples

			Some solutions for n=4:
  1 0 1 1     1 0 1 1     0 1 1 0     1 0 1 1     1 1 0 0
  1 1 1 1     0 1 1 0     1 0 1 1     1 1 0 0     1 1 1 0
  1 1 0 1     0 1 1 1     1 0 1 1     1 1 0 1     0 1 1 1
  1 1 1 0     1 1 1 1     1 1 0 1     1 0 1 1     0 0 1 1
  0 0 1 1     1 1 1 1     1 1 0 0     1 1 1 0     1 1 1 1
  0 1 1 1     1 0 1 1     0 0 1 1     0 1 1 0     1 1 0 1
		

Crossrefs

Cf. A202406.

Formula

Empirical: a(n) = 6*a(n-1) - 6*a(n-2) + 30*a(n-3) - 30*a(n-5) + 6*a(n-6) - 6*a(n-7) + a(n-8).
Empirical g.f.: x*(441 - 245*x + 2401*x^2 - 269*x^3 - 2381*x^4 + 433*x^5 - 477*x^6 + 81*x^7) / ((1 - x)*(1 + x)*(1 - 6*x + x^2)*(1 + 6*x^2 + x^4)). - Colin Barker, May 28 2018

A202401 Number of (n+2)X5 binary arrays avoiding patterns 000 and 010 in rows and columns.

Original entry on oeis.org

1785, 14161, 127449, 1147041, 9967797, 86620249, 761992011, 6703188129, 58683373353, 513746331121, 4506684244009, 39533523929761, 346498326472137, 3036943796391729, 26627628912968223, 233468469969434001
Offset: 1

Views

Author

R. H. Hardin Dec 19 2011

Keywords

Comments

Column 3 of A202406

Examples

			Some solutions for n=2
..0..1..1..1..0....0..1..1..1..1....0..1..1..0..0....0..1..1..1..0
..1..1..1..1..0....1..1..1..0..1....0..1..1..0..1....1..1..1..0..1
..1..0..1..1..1....1..1..1..1..0....1..1..1..1..1....1..1..1..1..1
..1..1..1..0..1....0..1..1..1..1....1..0..0..1..1....0..0..1..1..1
		

Formula

Empirical: a(n) = 4*a(n-1) -6*a(n-2) +208*a(n-3) +1467*a(n-4) +2288*a(n-5) +14460*a(n-6) -16112*a(n-7) -196310*a(n-8) -317880*a(n-9) -1560180*a(n-10) -148160*a(n-11) +9028922*a(n-12) +11574832*a(n-13) +44010892*a(n-14) +25514176*a(n-15) -118192707*a(n-16) -125367844*a(n-17) -476668986*a(n-18) -408258080*a(n-19) +338030809*a(n-20) +130898016*a(n-21) +1622159640*a(n-22) +1327120096*a(n-23) -201491540*a(n-24) +689017136*a(n-25) -2191876440*a(n-26) -1193361984*a(n-27) -79496564*a(n-28) -1038995744*a(n-29) +1441609944*a(n-30) +221943360*a(n-31) +192721849*a(n-32) +361958076*a(n-33) -389955770*a(n-34) +31380176*a(n-35) -67061043*a(n-36) -29507152*a(n-37) +31669612*a(n-38) -4326000*a(n-39) +5412042*a(n-40) +760840*a(n-41) -914740*a(n-42) +135040*a(n-43) -147750*a(n-44) -4112*a(n-45) +8348*a(n-46) -1152*a(n-47) +1259*a(n-48) -28*a(n-49) -6*a(n-50) -a(n-52)

A202402 Number of (n+2) X 6 binary arrays avoiding patterns 000 and 010 in rows and columns.

Original entry on oeis.org

7225, 83521, 1147041, 15752961, 204518601, 2655237841, 35242177441, 467758877041, 6151258109929, 80892053988001, 1067989132090609, 14100282166562881, 185843948311711089, 2449452622018343841
Offset: 1

Views

Author

R. H. Hardin, Dec 19 2011

Keywords

Comments

Column 4 of A202406.

Examples

			Some solutions for n=2
..1..1..1..0..1..1....1..1..0..1..1..1....0..0..1..1..0..1....1..1..1..1..0..1
..0..0..1..1..1..1....1..1..1..0..1..1....0..0..1..1..1..1....1..1..0..0..1..1
..0..0..1..1..0..0....1..0..1..1..0..1....1..1..1..1..1..1....1..0..1..1..1..1
..1..1..0..1..1..1....1..0..1..1..1..1....1..1..0..1..1..0....1..0..1..1..0..1
		

Formula

Empirical: a(n) = 15*a(n-1) -80*a(n-2) +844*a(n-3) +1004*a(n-4) -35544*a(n-5) +115456*a(n-6) -914564*a(n-7) +444940*a(n-8) +16058184*a(n-9) -40701152*a(n-10) +258860924*a(n-11) -308461204*a(n-12) -1949167256*a(n-13) +3816441696*a(n-14) -19578168100*a(n-15) +28744770072*a(n-16) +77026330196*a(n-17) -103155476592*a(n-18) +388573499036*a(n-19) -607461138756*a(n-20) -1242707886616*a(n-21) +1231928899008*a(n-22) -2762196574420*a(n-23) +4696440435372*a(n-24) +8074621589336*a(n-25) -6227432964928*a(n-26) +8725037408588*a(n-27) -15844024443908*a(n-28) -22686435500376*a(n-29) +12767215026080*a(n-30) -14603301394996*a(n-31) +23997892650910*a(n-32) +27857016656298*a(n-33) -9998958946352*a(n-34) +13206126361508*a(n-35) -13804078162172*a(n-36) -13021464255560*a(n-37) +4470604535936*a(n-38) -4224455602956*a(n-39) +3300210352260*a(n-40) +2630400942136*a(n-41) -975094435296*a(n-42) +564657864628*a(n-43) -353026216956*a(n-44) -244914369416*a(n-45) +98622692256*a(n-46) -33763821932*a(n-47) +16646619840*a(n-48) +10210503028*a(n-49) -4368385296*a(n-50) +927479668*a(n-51) -323553964*a(n-52) -167107784*a(n-53) +74050240*a(n-54) -12894364*a(n-55) +3092036*a(n-56) +862120*a(n-57) -429056*a(n-58) +74372*a(n-59) -14444*a(n-60) +376*a(n-61) +352*a(n-62) -60*a(n-63) +11*a(n-64) -a(n-65)

A202403 Number of (n+2) X 7 binary arrays avoiding patterns 000 and 010 in rows and columns.

Original entry on oeis.org

27880, 485809, 9967797, 204518601, 4005967518, 78466093924, 1562067102398, 31096917284521, 615218671150193, 12171431974069369, 241399947765550678, 4787763256234789636, 94860433041088942266, 1879479263103655110921
Offset: 1

Views

Author

R. H. Hardin, Dec 19 2011

Keywords

Comments

Column 5 of A202406.

Examples

			Some solutions for n=1
..1..1..0..1..1..1..1....1..1..0..1..1..0..0....1..0..0..1..1..1..1
..0..1..1..1..1..0..1....1..0..1..1..1..0..0....1..0..1..1..1..1..1
..0..1..1..0..1..1..1....1..1..1..1..0..1..1....1..1..1..1..1..1..0
		

Crossrefs

Cf. A202406.

A202404 Number of (n+2)X8 binary arrays avoiding patterns 000 and 010 in rows and columns.

Original entry on oeis.org

107584, 2825761, 86620249, 2655237841, 78466093924, 2318785835536, 69236744423044, 2067343479866401, 61531154532577081, 1831375876811990161, 54564164587647312676, 1625689239901192934416, 48419665200235480053604
Offset: 1

Views

Author

R. H. Hardin Dec 19 2011

Keywords

Comments

Column 6 of A202406

Examples

			Some solutions for n=3
..1..1..1..1..0..0..1..1....0..1..1..1..1..1..0..1....1..1..0..1..1..1..1..0
..1..1..0..0..1..1..0..1....1..1..0..1..1..1..0..1....1..1..0..0..1..1..0..0
..1..1..0..1..1..1..0..1....1..1..0..1..1..1..1..1....1..1..1..1..1..1..0..1
..0..0..1..1..1..1..1..0....0..0..1..1..0..0..1..1....0..0..1..1..0..1..1..1
..0..1..1..1..0..0..1..1....0..1..1..1..0..1..1..0....0..0..1..1..0..0..1..1
		

A202405 Number of (n+2)X9 binary arrays avoiding patterns 000 and 010 in rows and columns.

Original entry on oeis.org

422136, 16475481, 761992011, 35242177441, 1562067102398, 69236744423044, 3110996570522302, 139785597119732641, 6249561863920385395, 279406636275366390025, 12516437144636638824910, 560692476327741597685924
Offset: 1

Views

Author

R. H. Hardin Dec 19 2011

Keywords

Comments

Column 7 of A202406

Examples

			Some solutions for n=3
..1..0..0..1..1..1..0..1..1....1..1..0..1..1..1..1..0..1
..1..1..0..0..1..1..0..0..1....1..1..0..0..1..1..1..1..1
..0..1..1..1..0..1..1..1..1....0..1..1..0..0..1..1..1..1
..0..0..1..1..0..1..1..1..1....0..0..1..1..0..0..1..1..1
..1..1..0..1..1..1..1..1..1....1..1..0..1..1..0..1..1..1
		
Showing 1-8 of 8 results.