This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202451 #21 Jan 05 2025 19:51:39 %S A202451 1,0,1,0,1,2,0,0,1,3,0,0,1,2,5,0,0,0,1,3,8,0,0,0,1,2,5,13,0,0,0,0,1,3, %T A202451 8,21,0,0,0,0,1,2,5,13,34,0,0,0,0,0,1,3,8,21,55,0,0,0,0,0,1,2,5,13,34, %U A202451 89,0,0,0,0,0,0,1,3,8,21,55,144 %N A202451 Upper triangular Fibonacci matrix, by SW antidiagonals. %H A202451 Clark Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/52-3/Kimberling11132013.pdf">Fusion, Fission, and Factors</a>, Fib. Q., 52 (2014), 195-202. %F A202451 Row n consists of n-1 zeros followed by the Fibonacci sequence (1, 1, 2, 3, 5, 8, ...). %e A202451 Northwest corner: %e A202451 1...1...2...3...5...8...13...21...34 %e A202451 0...1...1...2...3...5....8...13...21 %e A202451 0...0...1...1...2...3....5....8...13 %e A202451 0...0...0...1...1...2....3....5....8 %t A202451 n = 12; %t A202451 Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]]; %t A202451 P = Transpose[Q]; F = P.Q; %t A202451 Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202451 as a sequence *) %t A202451 Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202452 as a sequence *) %t A202451 Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202453 as a sequence *) %t A202451 TableForm[Q] (* A202451, upper triangular Fibonacci matrix *) %t A202451 TableForm[P] (* A202452, lower triangular Fibonacci matrix *) %t A202451 TableForm[F] (* A202453, Fibonacci self-fusion matrix *) %t A202451 TableForm[FactorInteger[F]] %Y A202451 Cf. A000045, A188516, A202452, A202453, A202462. %K A202451 nonn,tabl %O A202451 1,6 %A A202451 _Clark Kimberling_, Dec 19 2011