This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202452 #17 Jan 05 2025 19:51:39 %S A202452 1,1,0,2,1,0,3,1,0,0,5,2,1,0,0,8,3,1,0,0,0,13,5,2,1,0,0,0,21,8,3,1,0, %T A202452 0,0,0,34,13,5,2,1,0,0,0,0,55,21,8,3,1,0,0,0,0,0,89,34,13,5,2,1,0,0,0, %U A202452 0,0,144,55,21,8,3,1,0,0,0,0,0,0 %N A202452 Lower triangular Fibonacci matrix, by SW antidiagonals. %H A202452 Clark Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/52-3/Kimberling11132013.pdf">Fusion, Fission, and Factors</a>, Fib. Q., 52 (2014), 195-202. %F A202452 Column n consists of n-1 zeros followed by the Fibonacci sequence (1,1,2,3,5,8,...). %e A202452 Northwest corner: %e A202452 1...0...0...0...0...0...0...0...0 %e A202452 1...1...0...0...0...0...0...0...0 %e A202452 2...1...1...0...0...0...0...0...0 %e A202452 3...2...1...1...0...0...0...0...0 %e A202452 5...3...2...1...1...0...0...0...0 %t A202452 n = 12; %t A202452 Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]]; %t A202452 P = Transpose[Q]; F = P.Q; %t A202452 Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202451 as a sequence *) %t A202452 Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202452 as a sequence *) %t A202452 Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n}, {i, 1, k}]] (* A202453 as a sequence *) %t A202452 TableForm[Q] (* A202451, upper triangular Fibonacci array *) %t A202452 TableForm[P] (* A202452, lower triangular Fibonacci array *) %t A202452 TableForm[F] (* A202453, Fibonacci self-fusion matrix *) %t A202452 TableForm[FactorInteger[F]] %Y A202452 Cf. A202451, A202453, A202462, A188516, A000045. %K A202452 nonn,tabl %O A202452 1,4 %A A202452 _Clark Kimberling_, Dec 19 2011