This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202462 #22 Sep 08 2022 08:46:01 %S A202462 1,5,21,70,214,614,1703,4619,12363,32812,86636,228012,598893,1571089, %T A202462 4118305,10790194,28262594,74014290,193807315,507451415,1328617751, %U A202462 3478516440,9107117016,23843134680,62422772569,163425968669,427856404653 %N A202462 a(n) = Sum_{j=1..n} Sum_{i=1..n} F(i,j), where F is the Fibonacci fusion array of A202453. %C A202462 Partial sums of A188516. %H A202462 G. C. Greubel, <a href="/A202462/b202462.txt">Table of n, a(n) for n = 1..1000</a> %H A202462 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (5,-6,-4,10,-2,-3,1). %F A202462 G.f.: x*(1+2*x^2-x^3)/((1+x)*(1-3*x+x^2)*(1-x-x^2)*(1-x)^2). - _R. J. Mathar_, Dec 20 2011 %F A202462 a(n) = Fibonacci(n+2)*Fibonacci(n+3) - 2*Fibonacci(n+4) + n + 4. - _G. C. Greubel_, Jul 23 2019 %t A202462 (* First program *) %t A202462 n = 28; %t A202462 Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[ %t A202462 Table[Fibonacci[k], {k, 1, n}]]; %t A202462 P = Transpose[Q]; F = P.Q; %t A202462 a[m_] := Sum[F[[i]][[j]], {i, 1, m}, {j, 1, m}] %t A202462 Table[a[m], {m, 1, n}] (* A202462 *) %t A202462 Table[a[m] - a[m - 1], {m, 1, n}] (* A188516 *) %t A202462 (* Additional programs *) %t A202462 LinearRecurrence[{5,-6,-4,10,-2,-3,1},{1,5,21,70,214,614,1703},30] (* _Harvey P. Dale_, Jul 23 2015 *) %t A202462 With[{F=Fibonacci}, Table[F[n+2]*F[n+3] -2*F[n+4] +n+4, {n,30}]] (* _G. C. Greubel_, Jul 23 2019 *) %o A202462 (PARI) vector(30, n, f=fibonacci; f(n+2)*f(n+3) -2*f(n+4) +n+4) \\ _G. C. Greubel_, Jul 23 2019 %o A202462 (Magma) F:=Fibonacci; [F(n+2)*F(n+3) -2*F(n+4) +n+4: n in [1..30]]; // _G. C. Greubel_, Jul 23 2019 %o A202462 (Sage) f=fibonacci; [f(n+2)*f(n+3)-2*f(n+4) +n+4 for n in (1..30)] # _G. C. Greubel_, Jul 23 2019 %o A202462 (GAP) F:=Fibonacci;; List([1..30], n-> F(n+2)*F(n+3) -2*F(n+4) +n+4); # _G. C. Greubel_, Jul 23 2019 %Y A202462 Cf. A000045, A188616, A202451. %K A202462 nonn %O A202462 1,2 %A A202462 _Clark Kimberling_, Dec 19 2011