A202464 Number of (n+2) X 3 binary arrays with no more than two of any consecutive three bits set in any row or column.
265, 1573, 9253, 54085, 317179, 1858993, 10894297, 63850777, 374215201, 2193190681, 12853833343, 75333557377, 441513844561, 2587618272973, 15165477047269, 88881616706701, 520916142332515, 3052978074328417
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0....1..0..0....1..0..0....0..0..0....1..0..1....0..0..0....0..1..1 ..0..0..1....1..0..1....0..1..0....1..0..1....0..1..0....0..1..0....0..1..1 ..0..1..0....0..1..0....0..1..0....1..0..0....0..0..0....1..1..0....1..0..0 ..0..0..0....0..0..0....1..0..0....0..1..1....0..0..0....0..0..0....0..1..0 ..0..1..1....0..0..1....0..1..0....0..1..1....0..1..1....0..0..0....1..1..0 ..1..0..1....0..1..1....0..0..0....0..0..0....0..1..0....1..0..0....1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A202471.
Formula
Empirical: a(n) = 4*a(n-1) +8*a(n-2) +18*a(n-3) -6*a(n-4) +2*a(n-5) -a(n-6).
Empirical g.f.: x*(265 + 513*x + 841*x^2 - 281*x^3 + 91*x^4 - 49*x^5) / (1 - 4*x - 8*x^2 - 18*x^3 + 6*x^4 - 2*x^5 + x^6). - Colin Barker, Jun 01 2018
Comments