cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202477 The number of ways to build all endofunctions on each block of every set partition of {1,2,...,n}.

This page as a plain text file.
%I A202477 #27 Jul 13 2024 15:40:05
%S A202477 1,1,5,40,437,6036,100657,1965160,43937385,1106488720,30982333661,
%T A202477 954607270464,32090625710365,1168646120904640,45826588690845705,
%U A202477 1924996299465966976,86231288506425806033,4103067277186778016000,206655307175847710248885
%N A202477 The number of ways to build all endofunctions on each block of every set partition of {1,2,...,n}.
%H A202477 Alois P. Heinz, <a href="/A202477/b202477.txt">Table of n, a(n) for n = 0..385</a>
%F A202477 E.g.f.: exp(T(x)/(1-T(x))) where T(x) is the e.g.f. for A000169.
%F A202477 a(n) ~ n^(n-1/3) * exp(3/2*n^(1/3) - 2/3) / sqrt(3). - _Vaclav Kotesovec_, Sep 24 2013
%F A202477 a(n) = Sum_{k=0..n} n^(n-k)*binomial(n-1,k-1)*A000262(k). - _Fabian Pereyra_, Jul 12 2024
%F A202477 The above formula can be written with the Abel polynomials: a(n) = Sum_{k=0..n} (-1)^(n - k) * A137452(n, k) * A000262(k). - _Peter Luschny_, Jul 13 2024
%p A202477 with(combinat):
%p A202477 b:= proc(n, i) option remember; `if`(n=0, 1,
%p A202477       `if`(i<1, 0, add(i^(i*j)*b(n-i*j, i-1)*
%p A202477        multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
%p A202477     end:
%p A202477 a:= n-> b(n$2):
%p A202477 seq(a(n), n=0..20);  # _Alois P. Heinz_, Mar 29 2016
%t A202477 nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}] ;
%t A202477 Range[0, nn]! CoefficientList[Series[Exp[t/(1 - t)], {x, 0, nn}], x]
%Y A202477 Cf. A000262 (the same for permutations), A137452.
%K A202477 nonn
%O A202477 0,3
%A A202477 _Geoffrey Critzer_, Dec 19 2011