This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202477 #27 Jul 13 2024 15:40:05 %S A202477 1,1,5,40,437,6036,100657,1965160,43937385,1106488720,30982333661, %T A202477 954607270464,32090625710365,1168646120904640,45826588690845705, %U A202477 1924996299465966976,86231288506425806033,4103067277186778016000,206655307175847710248885 %N A202477 The number of ways to build all endofunctions on each block of every set partition of {1,2,...,n}. %H A202477 Alois P. Heinz, <a href="/A202477/b202477.txt">Table of n, a(n) for n = 0..385</a> %F A202477 E.g.f.: exp(T(x)/(1-T(x))) where T(x) is the e.g.f. for A000169. %F A202477 a(n) ~ n^(n-1/3) * exp(3/2*n^(1/3) - 2/3) / sqrt(3). - _Vaclav Kotesovec_, Sep 24 2013 %F A202477 a(n) = Sum_{k=0..n} n^(n-k)*binomial(n-1,k-1)*A000262(k). - _Fabian Pereyra_, Jul 12 2024 %F A202477 The above formula can be written with the Abel polynomials: a(n) = Sum_{k=0..n} (-1)^(n - k) * A137452(n, k) * A000262(k). - _Peter Luschny_, Jul 13 2024 %p A202477 with(combinat): %p A202477 b:= proc(n, i) option remember; `if`(n=0, 1, %p A202477 `if`(i<1, 0, add(i^(i*j)*b(n-i*j, i-1)* %p A202477 multinomial(n, n-i*j, i$j)/j!, j=0..n/i))) %p A202477 end: %p A202477 a:= n-> b(n$2): %p A202477 seq(a(n), n=0..20); # _Alois P. Heinz_, Mar 29 2016 %t A202477 nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}] ; %t A202477 Range[0, nn]! CoefficientList[Series[Exp[t/(1 - t)], {x, 0, nn}], x] %Y A202477 Cf. A000262 (the same for permutations), A137452. %K A202477 nonn %O A202477 0,3 %A A202477 _Geoffrey Critzer_, Dec 19 2011