cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202495 Decimal expansion of x satisfying x = e^(-2*Pi*x).

This page as a plain text file.
%I A202495 #17 Feb 07 2025 16:44:07
%S A202495 2,3,2,3,1,3,3,8,2,5,5,5,1,8,1,6,2,2,8,9,5,5,2,5,4,6,6,8,0,9,0,5,4,6,
%T A202495 9,9,6,0,0,6,5,5,4,0,3,7,2,9,1,0,6,2,4,0,8,2,6,5,4,5,6,7,1,7,8,1,0,2,
%U A202495 2,7,8,1,9,9,3,8,2,6,8,1,7,5,3,4,2,0,8,9,8,2,1,8,5,6,9,6,8,3,6
%N A202495 Decimal expansion of x satisfying x = e^(-2*Pi*x).
%C A202495 See A202348 for a guide to related sequences. The Mathematica program includes a graph.
%H A202495 Alois P. Heinz, <a href="/A202495/b202495.txt">Table of n, a(n) for n = 0..10000</a>
%F A202495 Equals LambertW(2*Pi)/(2*Pi). - _Alois P. Heinz_, Feb 26 2020
%e A202495 x=0.232313382555181622895525466809054699600655...
%p A202495 evalf(LambertW(2*Pi)/(2*Pi), 145);  # _Alois P. Heinz_, Feb 26 2020
%t A202495 u = -2*Pi; v = 0;
%t A202495 f[x_] := x; g[x_] := E^(u*x + v)
%t A202495 Plot[{f[x], g[x]}, {x, 0, .5}, {AxesOrigin -> {0, 0}}]
%t A202495 r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110]
%t A202495 RealDigits[r]    (* A202357 *)
%t A202495 RealDigits[ ProductLog[2*Pi]/(2*Pi), 10, 99] // First (* _Jean-François Alcover_, Feb 19 2013 *)
%Y A202495 Cf. A000796, A001113, A202348.
%K A202495 nonn,cons
%O A202495 0,1
%A A202495 _Clark Kimberling_, Dec 20 2011