This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202495 #17 Feb 07 2025 16:44:07 %S A202495 2,3,2,3,1,3,3,8,2,5,5,5,1,8,1,6,2,2,8,9,5,5,2,5,4,6,6,8,0,9,0,5,4,6, %T A202495 9,9,6,0,0,6,5,5,4,0,3,7,2,9,1,0,6,2,4,0,8,2,6,5,4,5,6,7,1,7,8,1,0,2, %U A202495 2,7,8,1,9,9,3,8,2,6,8,1,7,5,3,4,2,0,8,9,8,2,1,8,5,6,9,6,8,3,6 %N A202495 Decimal expansion of x satisfying x = e^(-2*Pi*x). %C A202495 See A202348 for a guide to related sequences. The Mathematica program includes a graph. %H A202495 Alois P. Heinz, <a href="/A202495/b202495.txt">Table of n, a(n) for n = 0..10000</a> %F A202495 Equals LambertW(2*Pi)/(2*Pi). - _Alois P. Heinz_, Feb 26 2020 %e A202495 x=0.232313382555181622895525466809054699600655... %p A202495 evalf(LambertW(2*Pi)/(2*Pi), 145); # _Alois P. Heinz_, Feb 26 2020 %t A202495 u = -2*Pi; v = 0; %t A202495 f[x_] := x; g[x_] := E^(u*x + v) %t A202495 Plot[{f[x], g[x]}, {x, 0, .5}, {AxesOrigin -> {0, 0}}] %t A202495 r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110] %t A202495 RealDigits[r] (* A202357 *) %t A202495 RealDigits[ ProductLog[2*Pi]/(2*Pi), 10, 99] // First (* _Jean-François Alcover_, Feb 19 2013 *) %Y A202495 Cf. A000796, A001113, A202348. %K A202495 nonn,cons %O A202495 0,1 %A A202495 _Clark Kimberling_, Dec 20 2011