A202502 Modified lower triangular Fibonacci matrix, by antidiagonals.
1, 0, 2, 0, 1, 3, 0, 0, 2, 5, 0, 0, 1, 3, 8, 0, 0, 0, 2, 5, 13, 0, 0, 0, 1, 3, 8, 21, 0, 0, 0, 0, 2, 5, 13, 34, 0, 0, 0, 0, 1, 3, 8, 21, 55, 0, 0, 0, 0, 0, 2, 5, 13, 34, 89, 0, 0, 0, 0, 0, 1, 3, 8, 21, 55, 144, 0, 0, 0, 0, 0, 0, 2, 5, 13, 34, 89, 233, 0, 0, 0, 0, 0, 0, 1, 3, 8, 21, 55
Offset: 1
Examples
Northwest corner: 1...0...0...0...0...0...0...0...0 2...1...0...0...0...0...0...0...0 3...2...1...0...0...0...0...0...0 5...3...2...1...1...0...0...0...0 8...5...3...2...1...1...0...0...0
Links
- Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52 (2014), 195-202.
Programs
-
Mathematica
n = 14; Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]]; Qt = Transpose[Q]; P1 = Qt - IdentityMatrix[n]; P = P1[[Range[2, n], Range[1, n]]]; F = P.Q; Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202502 as a sequence *) Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202451 as a sequence *) Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202503 as a sequence *) TableForm[P] (* A202502, modified lower triangular Fibonacci matrix *) TableForm[Q] (* A202451, upper tri. Fibonacci matrix *) TableForm[F] (* A202503, Fibonacci self-fission matrix *)
Comments