A202503 Fibonacci self-fission matrix, by antidiagonals.
1, 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 8, 9, 8, 8, 8, 13, 14, 15, 13, 13, 13, 21, 23, 24, 24, 21, 21, 21, 34, 37, 39, 39, 39, 34, 34, 34, 55, 60, 63, 64, 63, 63, 55, 55, 55, 89, 97, 102, 103, 104, 102, 102, 89, 89, 89, 144, 157, 165, 167, 168, 168, 165, 165, 144, 144, 144
Offset: 1
Examples
Northwest corner: 1....1....2....3....5.....8....13...21 2....3....5....8...13....21....34...55 3....5....9...14...23....37....60...97 5....8...15...24...39....63...102...165 8...13...24...39...64...103...167...270
Links
- Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52 (2014), 195-202.
Programs
-
Mathematica
n = 14; Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[Fibonacci[k], {k, 1, n}]]; Qt = Transpose[Q]; P1 = Qt - IdentityMatrix[n]; P = P1[[Range[2, n], Range[1, n]]]; F = P.Q; Flatten[Table[P[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202502 as a sequence *) Flatten[Table[Q[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202451 as a sequence *) Flatten[Table[F[[i]][[k + 1 - i]], {k, 1, n - 1}, {i, 1, k}]] (* A202503 as a sequence *) TableForm[P] (* A202502, modified lower triangular Fibonacci array *) TableForm[Q] (* A202451, upper tri. Fibonacci array *) TableForm[F] (* A202503, Fibonacci fission array *)
Comments