This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202582 #7 Mar 30 2012 18:37:33 %S A202582 1,0,1,0,19,0,515,0,74383,0,6816465,0,1457117673,0,241183200687,0, %T A202582 188350353304919,0,60855583632497865,0,39858196864723826583,0, %U A202582 17024263169695049621551,0,20817292362271689177123509,0,13408255577123563666760376685,0 %N A202582 Inverse binomial transform of A144691. %C A202582 A144691 is defined by: A144691(n) = limit of the coefficient of x^(2^m+n) in B(x)^(n+1)/(n+1) as m grows, where B(x) = Sum_{k>=0} x^(2^k). %F A202582 G.f. A(x) satisfies: x/Series_Reversion(x*A(x)) = G(x) - x, so that G(x*A(x)) = (1+x)*A(x) and A(x/(G(x) - x)) = G(x) - x, where G(x) is the g.f. of A144692. %e A202582 G.f.: A(x) = 1 + x^2 + 19*x^4 + 515*x^6 + 74383*x^8 + 6816465*x^10 +... %e A202582 where %e A202582 x/Series_Reversion(x*A(x)) = 1 + x^2 + 17*x^4 + 408*x^6 + 69473*x^8 + 6018928*x^10 +...+ A144692(n)*x^n +... %e A202582 The g.f. G(x) of A144692 begins: %e A202582 G(x) = 1 + x + x^2 + 17*x^4 + 408*x^6 + 69473*x^8 + 6018928*x^10 +... %e A202582 where G(x) satisfies: A(x) = G(x*A(x))/(1+x) and G(x) = A(x/(G(x)-x)) + x. %Y A202582 Cf. A144691, A144692, A144690. %K A202582 nonn %O A202582 0,5 %A A202582 _Paul D. Hanna_, Dec 21 2011