cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202650 Number of ways to write n = p + p(k) + p(m) with 0 < k <= m, where p is a prime and p(.) is the partition function (A000041).

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 4, 4, 6, 5, 7, 5, 7, 5, 10, 6, 10, 5, 12, 7, 13, 5, 13, 6, 15, 6, 15, 6, 15, 6, 13, 7, 15, 8, 17, 10, 14, 8, 14, 11, 12, 9, 13, 11, 14, 14, 16, 13, 16, 14, 15, 12, 12, 14, 16, 14, 13, 10, 14, 16, 15, 14, 18, 17, 15, 17, 14, 14, 15, 16, 14, 13, 15, 19, 18, 18, 16, 15, 13, 17, 18, 14, 19, 17, 19, 18, 18, 15, 21, 17, 22, 13, 17, 14, 20, 15, 19, 13, 15, 15
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 24 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 3.
(ii) For any integer n > 2, |n - p(k)| is prime for some k = 1,...,n. Also, for any positive integer n not equal to 7, n + p(k) is prime for some k = 1,...,n.
We have verified part (i) of the conjecture for all n = 4, 5, ..., 2*10^7.

Examples

			a(6) = 3 since 6 = 3 + p(1) + p(2) = 2 + p(1) + p(3) = 2 + p(2) + p(2) with 2 and 3 prime.
		

Crossrefs

Programs

  • Mathematica
    PQ[n_]:=n>1&&PrimeQ[n]
    a[n_]:=Sum[If[PQ[n-PartitionsP[m]-PartitionsP[k]],1,0],{m,1,n},{k,1,m}]
    Table[a[n],{n,1,100}]