A202672 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A087062 based on (1,1,1,1,...); by antidiagonals.
1, -1, 1, -3, 1, 1, -5, 6, -1, 1, -7, 15, -10, 1, 1, -9, 28, -35, 15, -1, 1, -11, 45, -84, 70, -21, 1, 1, -13, 66, -165, 210, -126, 28, -1, 1, -15, 91, -286, 495, -462, 210, -36, 1, 1, -17, 120, -455, 1001, -1287, 924, -330, 45, -1, 1, -19, 153
Offset: 1
Examples
The 1st principal submatrix (ps) of A087062 is {{1}} (using Mathematica matrix notation), with p(1)=1-x and zero-set {1}. ... The 2nd ps is {{1,1},{1,2}}, with p(2)=1-3x+x^2 and zero-set {0.381..., 2.618...}. ... The 3rd ps is {{1,1,1},{1,2,2},{1,2,3}}, with p(3)=1-5x+6x^2-x^3 and zero-set {0.283..., 0.426..., 8.290...}. ... Top of the array: 1...-1 1...-3....1 1...-5....6....-1 1...-7...15...-10....1 1...-9...28...-35...15...-1
Links
- S.-G. Hwang, Cauchy's interlace theorem for eigenvalues of Hermitian matrices, American Mathematical Monthly 111 (2004) 157-159.
- A. Mercer and P. Mercer, Cauchy's interlace theorem and lower bounds for the spectral radius, International Journal of Mathematics and Mathematical Sciences 23, no. 8 (2000) 563-566.
Crossrefs
Programs
-
Mathematica
U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[1, {k, 1, n}]]; L[n_] := Transpose[U[n]]; F[n_] := CharacteristicPolynomial[L[n].U[n], x]; c[n_] := CoefficientList[F[n], x] TableForm[Flatten[Table[F[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] TableForm[Table[c[n], {n, 1, 10}]] Table[(F[k] /. x -> -2), {k, 1, 30}] (* A007583 *) Table[(F[k] /. x -> 2), {k, 1, 30}] (* A087168 *)
Comments