This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202674 #6 Jul 12 2012 00:39:53 %S A202674 1,3,3,5,10,5,7,18,18,7,9,26,35,26,9,11,34,53,53,34,11,13,42,71,84,71, %T A202674 42,13,15,50,89,116,116,89,50,15,17,58,107,148,165,148,107,58,17,19, %U A202674 66,125,180,215,215,180,125,66,19,21,74,143,212,265,286,265,212 %N A202674 Symmetric matrix based on (1,3,5,7,9,...), by antidiagonals. %C A202674 Let s=(1,3,5,7,9,...) and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202674 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202675 for characteristic polynomials of principal submatrices of M. %C A202674 ... %C A202674 row 1 (1,3,5,7,...) A005408 %C A202674 diagonal (1,10,35,84,...) A000447 %C A202674 antidiagonal sums (1,6,20,50,...) A002415 %e A202674 Northwest corner: %e A202674 1....3....5.....7.....9 %e A202674 3...10...18....26....34 %e A202674 5...18...35....53....71 %e A202674 7...26...53....84...116 %e A202674 9...34...71...116...165 %t A202674 U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[2 k - 1, {k, 1, 15}]]; %t A202674 L = Transpose[U]; M = L.U; TableForm[M] %t A202674 m[i_, j_] := M[[i]][[j]]; %t A202674 Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] %Y A202674 Cf. A005408, A202675, A193722. %K A202674 nonn,tabl %O A202674 1,2 %A A202674 _Clark Kimberling_, Dec 22 2011