This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202677 #12 Oct 02 2017 09:57:51 %S A202677 1,-1,1,-18,1,1,-116,84,-1,1,-538,1347,-250,1,1,-2256,11566,-8216,585, %T A202677 -1,1,-9158,75453,-118722,35086,-1176,1,1,-36796,426288,-1152432, %U A202677 801084,-118656,2128,-1,1,-147378,2214919,-8910538,11175711,-4079622,339762,-3564,1,1,-589736,10915650 %N A202677 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A202676 based on (1,4,7,10,13,...); by antidiagonals. %C A202677 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1). %H A202677 S.-G. Hwang, <a href="http://matrix.skku.ac.kr/Series-E/Monthly-E.pdf">Cauchy's interlace theorem for eigenvalues of Hermitian matrices</a>, American Mathematical Monthly 111 (2004) 157-159. %H A202677 A. Mercer and P. Mercer, <a href="http://dx.doi.org/10.1155/S016117120000257X">Cauchy's interlace theorem and lower bounds for the spectral radius</a>, International Journal of Mathematics and Mathematical Sciences 23, no. 8 (2000) 563-566. %e A202677 The 1st principal submatrix (ps) of A202676 is {{1}} (using Mathematica matrix notation), with p(1)=1-x and zero-set {1}. %e A202677 ... %e A202677 The 2nd ps is {{1,4},{4,17}}, with p(2)=1-18x+x^2 and zero-set {0.055..., 17.944...}. %e A202677 ... %e A202677 The 3rd ps is {{1,4,7},{4,17,32},{7,32,66}}, with p(3)=1-116x+84x^2-x^3 and zero-set {0.008..., 1.395..., 82.595...}. %e A202677 ... %e A202677 Top of the array: %e A202677 1...-1 %e A202677 1...-18....1 %e A202677 1...-116...84.....-1 %e A202677 1...-538...1347...-250...1 %t A202677 f[k_] := 3 k - 2 %t A202677 U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]]; %t A202677 L[n_] := Transpose[U[n]]; %t A202677 F[n_] := CharacteristicPolynomial[L[n].U[n], x]; %t A202677 c[n_] := CoefficientList[F[n], x] %t A202677 TableForm[Flatten[Table[F[n], {n, 1, 10}]]] %t A202677 Table[c[n], {n, 1, 12}] %t A202677 Flatten[%] %t A202677 TableForm[Table[c[n], {n, 1, 10}]] %Y A202677 Cf. A202676, A202677, A202605. %K A202677 tabl,sign %O A202677 1,4 %A A202677 _Clark Kimberling_, Dec 22 2011