A202687 Triangle arising in the computation of hypersigma, definition 2 (A191161).
1, 1, 1, 1, 4, 1, 1, 6, 18, 1, 1, 8, 36, 104, 1, 1, 10, 60, 260, 750, 1, 1, 12, 90, 520, 2250, 6492, 1, 1, 14, 126, 910, 5250, 22722, 65562, 1, 1, 16, 168, 1456, 10500, 60592, 262248, 756688, 1, 1, 18, 216, 2184, 18900, 136332, 786744, 3405096, 9825030, 1
Offset: 0
Examples
Triangle starts: 1; 1, 1; 1, 4, 1; 1, 6, 18, 1; 1, 8, 36, 104, 1; 1, 10, 60, 260, 750, 1; 1, 12, 90, 520, 2250, 6492, 1;
Links
- Jinyuan Wang, Rows n = 0..100 of triangle, flattened
Crossrefs
Cf. A000629 (row sums).
Programs
-
Maple
A202687 := proc(n,k) if k = 0 or k = n then 1; else binomial(n,k)*add(procname(k,j),j=0..k) ; end if; end proc: # R. J. Mathar, Mar 15 2013
-
Mathematica
a[0, k_] := 1; a[n_, n_] := 1; a[n_, k_] := a[n, k] = Binomial[n, k] Sum[a[k, j], {j, 0, k}]; ColumnForm[Table[a[n, k], {n, 0, 9}, {k, 0, n}], Center]
Formula
T(n, k) = binomial(n, k)*Sum_{j=0..k} T(k, j).
Comments