cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A204016 Symmetric matrix based on f(i,j) = max(j mod i, i mod j), by antidiagonals.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 2, 0, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 0, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 0, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 0, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 0, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 7
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2012

Keywords

Comments

A204016 represents the matrix M given by f(i,j) = max{(j mod i), (i mod j)} for i >= 1 and j >= 1. See A204017 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
Guide to symmetric matrices M based on functions f(i,j) and characteristic polynomial sequences (c.p.s.) with interlaced zeros:
f(i,j)..........................M.........c.p.s.
C(i+j,j)........................A007318...A045912
min(i,j)........................A003983...A202672
max(i,j)........................A051125...A203989
(i+j)*min(i,j)..................A203990...A203991
|i-j|...........................A049581...A203993
max(i-j+1,j-i+1)................A143182...A203992
min(i-j+1,j-i+1)................A203994...A203995
min(i(j+1),j(i+1))..............A203996...A203997
max(i(j+1)-1,j(i+1)-1)..........A203998...A203999
min(i(j+1)-1,j(i+1)-1)..........A204000...A204001
min(2i+j,i+2j)..................A204002...A204003
max(2i+j-2,i+2j-2)..............A204004...A204005
min(2i+j-2,i+2j-2)..............A204006...A204007
max(3i+j-3,i+3j-3)..............A204008...A204011
min(3i+j-3,i+3j-3)..............A204012...A204013
min(3i-2,3j-2)..................A204028...A204029
1+min(j mod i, i mod j).........A204014...A204015
max(j mod i, i mod j)...........A204016...A204017
1+max(j mod i, i mod j).........A204018...A204019
min(i^2,j^2)....................A106314...A204020
min(2i-1, 2j-1).................A157454...A204021
max(2i-1, 2j-1).................A204022...A204023
min(i(i+1)/2,j(j+1)/2)..........A106255...A204024
gcd(i,j)........................A003989...A204025
gcd(i+1,j+1)....................A204030...A204111
min(F(i+1),F(j+1)),F=A000045....A204026...A204027
gcd(F(i+1),F(j+1)),F=A000045....A204112...A204113
gcd(L(i),L(j)),L=A000032........A204114...A204115
gcd(2^i-1,2^j-2)................A204116...A204117
gcd(prime(i),prime(j))..........A204118...A204119
gcd(prime(i+1),prime(j+1))......A204120...A204121
gcd(2^(i-1),2^(j-1))............A144464...A204122
max(floor(i/j),floor(j/i))......A204123...A204124
min(ceiling(i/j),ceiling(j/i))..A204143...A204144
Delannoy matrix.................A008288...A204135
max(2i-j,2j-i)..................A204154...A204155
-1+max(3i-j,3j-i)...............A204156...A204157
max(3i-2j,3j-2i)................A204158...A204159
floor((i+1)/2)..................A204164...A204165
ceiling((i+1)/2)................A204166...A204167
i+j.............................A003057...A204168
i+j-1...........................A002024...A204169
i*j.............................A003991...A204170
..abbreviation below: AOE means "all 1's except"
AOE f(i,i)=i....................A204125...A204126
AOE f(i,i)=A000045(i+1).........A204127...A204128
AOE f(i,i)=A000032(i)...........A204129...A204130
AOE f(i,i)=2i-1.................A204131...A204132
AOE f(i,i)=2^(i-1)..............A204133...A204134
AOE f(i,i)=3i-2.................A204160...A204161
AOE f(i,i)=floor((i+1)/2).......A204162...A204163
...
Other pairs (M, c.p.s.): (A204171, A204172) to (A204183, A204184)
See A202695 for a guide to choices of symmetric matrix M for which the zeros of the characteristic polynomials are all positive.

Examples

			Northwest corner:
  0 1 1 1 1 1 1 1
  0 1 2 2 2 2 2 2
  1 2 0 3 3 3 3 3
  1 2 3 0 4 4 4 4
  1 2 3 4 0 5 5 5
  1 2 3 4 5 0 6 6
  1 2 3 4 5 6 0 7
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Max[Mod[i, j], Mod[j, i]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 12}, {i, 1, n}]]  (* A204016 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]               (* A204017 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A202692 The first of three triangles counting 3-colored alternating permutations by their last value.

Original entry on oeis.org

1, 0, 1, 9, 9, 8, 0, 9, 18, 26, 405, 405, 396, 378, 352, 0, 405, 810, 1206, 1584, 1936, 44469, 44469, 44064, 43254, 42048, 40464, 38528, 0, 44469, 88938, 133002, 176256, 218304, 258768, 297296, 9086985, 9086985, 9042516, 8953578, 8820576, 8644320, 8426016, 8167248, 7869952
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 2011

Keywords

Comments

"The table counting alternating permutations with r colors by their last value is obtained by the following algorithm: first separate the picture by the column p = 0 and then compute r triangles. Put 1 at the top of each triangle and compute the rest as follows: fill the second row of all triangles as the sum of the elements of the first row strictly to their left. Then fill the third row of all triangles as the sum of the elements of the previous row to their right. Compute all rows successively by reading from left to right and right to left alternately." [Joshuat-Verges et al.]

Examples

			The triangle begins:
1
0 1
9 9 8
0 9 18 26
405 405 396 378 352
...
The three triangles together:
1                     1                      1
0 1                   1 2                    2 3
9 9 8                 8 7 5                  5 3 0
0 9 18 26             26 34 41 46            46 51 54 54
405 405 396 378 352   352 326 292 251 205    205 159 108 54 0
		

Crossrefs

The three triangles with initial 1,1,1 are A202692, A202693, A202694; with 1,0,0: A202695, A202696, A202697; with 0,1,0: A202698, A202699, A202700; with 0,0,1: A202701, A202702, A202703.

Programs

  • Java
    /* Cf. link */

Extensions

More terms from Georg Fischer, Oct 20 2021

A202696 The second of a set of three triangles constructed by the same rule as A202692-A202694, but where the top entries in the three triangles are 1,0,0 respectively.

Original entry on oeis.org

0, 1, 1, 4, 3, 2, 14, 18, 21, 23, 176, 162, 144, 123, 100
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 2011

Keywords

Examples

			Triangle begins:
0
1 1
4 3 2
14 18 21 23
176 162 144 123 100
...
		

Crossrefs

See A202695 for further information.

A202697 The third of a set of three triangles constructed by the same rule as A202692-A202694, but where the top entries in the three triangles are 1,0,0 respectively.

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 23, 25, 26, 26, 100, 77, 52, 26, 0
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 2011

Keywords

Examples

			Triangle begins:
0
1 1
2 1 0
23 25 26 26
100 77 52 26 0
...
		

Crossrefs

See A202695 for further information.
Showing 1-4 of 4 results.