This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202750 #19 Apr 13 2025 17:25:14 %S A202750 1,1,1,1,16,1,1,81,81,1,1,256,1296,256,1,1,625,10000,10000,625,1,1, %T A202750 1296,50625,160000,50625,1296,1,1,2401,194481,1500625,1500625,194481, %U A202750 2401,1,1,4096,614656,9834496,24010000,9834496,614656,4096,1,1,6561,1679616,49787136,252047376,252047376,49787136,1679616,6561,1 %N A202750 Triangle T(n,k) = binomial(n,k)^4 read by rows, 0<=k<=n. %C A202750 Zhi-Wei Sun has conjectures related to the arithmetic mean of the polynomials formed from the rows of this sequence. %H A202750 Vincenzo Librandi, <a href="/A202750/b202750.txt">Rows n = 1..21, flattened</a> %H A202750 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1103.4325">Conjectures and results on x^2 mod p^2 with 4p=x^2+dy^2</a> (2011). %e A202750 Interpreted as polynomials: %e A202750 1 %e A202750 x + 1 %e A202750 x^2 + 16*x + 1 %e A202750 x^3 + 81*x^2 + 81*x + 1 %e A202750 x^4 + 256*x^3 + 1296*x^2 + 256*x + 1 %e A202750 x^5 + 625*x^4 + 10000*x^3 + 10000*x^2 + 625*x + 1 %o A202750 (PARI) for(n=0,9,for(k=0,n,print1(binomial(n,k)^4", "))) %Y A202750 Cf. A007318. %Y A202750 Row sums give A005260. %K A202750 nonn,easy,tabl %O A202750 0,5 %A A202750 _Charles R Greathouse IV_, Dec 23 2011