cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202753 Number of n X 5 nonnegative integer arrays with each row and column increasing from zero by 0 or 1.

Original entry on oeis.org

1, 5, 31, 184, 924, 3809, 13197, 39675, 106357, 259669, 586829, 1242946, 2491516, 4763097, 8738111, 15461061, 26494977, 44126629, 71634979, 113637500, 176531380, 269049265, 402952089, 593884703, 862423461, 1235348661, 1747178785
Offset: 1

Views

Author

R. H. Hardin, Dec 23 2011

Keywords

Comments

Column 5 of A202756.

Examples

			Some solutions for n=5:
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..1..1..1..1....0..0..0..0..0....0..0..1..1..1....0..0..0..0..1
..0..1..1..1..2....0..0..0..1..1....0..1..1..1..1....0..0..0..0..1
..0..1..1..2..3....0..0..0..1..2....0..1..1..2..2....0..1..1..1..1
..0..1..2..3..4....0..0..1..1..2....0..1..2..2..2....0..1..1..2..2
		

Crossrefs

Cf. A202756.

Formula

Empirical: a(n) = (1/302400)*n^10 + (1/10080)*n^9 + (1/1008)*n^8 + (1/336)*n^7 - (67/14400)*n^6 + (7/480)*n^5 + (1021/6048)*n^4 - (145/1008)*n^3 + (10519/12600)*n^2 - (367/420)*n + 1.
Conjectures from Colin Barker, Jun 01 2018: (Start)
G.f.: x*(1 - 6*x + 31*x^2 - 47*x^3 + 110*x^4 - 162*x^5 + 140*x^6 - 79*x^7 + 31*x^8 - 8*x^9 + x^10) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>11.
(End)