cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202756 T(n,k)=Number of nXk nonnegative integer arrays with each row and column increasing from zero by 0 or 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 8, 4, 1, 1, 5, 17, 17, 5, 1, 1, 6, 31, 62, 31, 6, 1, 1, 7, 51, 184, 184, 51, 7, 1, 1, 8, 78, 462, 924, 462, 78, 8, 1, 1, 9, 113, 1022, 3809, 3809, 1022, 113, 9, 1, 1, 10, 157, 2052, 13197, 26394, 13197, 2052, 157, 10, 1, 1, 11, 211, 3819, 39675
Offset: 1

Views

Author

R. H. Hardin Dec 23 2011

Keywords

Comments

Table starts
.1..1...1....1......1........1.........1...........1............1
.1..2...3....4......5........6.........7...........8............9
.1..3...8...17.....31.......51........78.........113..........157
.1..4..17...62....184......462......1022........2052.........3819
.1..5..31..184....924.....3809.....13197.......39675.......106357
.1..6..51..462...3809....26394....150777......721382......2964632
.1..7..78.1022..13197...150777...1442764....11408125.....75393424
.1..8.113.2052..39675...721382..11408125...150786848...1649287336
.1..9.157.3819.106357..2964632..75393424..1649287336..30114993376
.1.10.211.6688.259669.10720688.424992394.15057496688.455474662471

Examples

			Some solutions for n=5 k=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..1....0..0..0....0..1..1....0..1..1....0..0..0....0..0..0
..0..0..1....0..0..1....0..0..0....0..1..1....0..1..2....0..0..0....0..0..0
..0..0..1....0..1..1....0..0..1....0..1..2....0..1..2....0..0..0....0..0..0
..0..0..1....0..1..2....0..1..1....0..1..2....0..1..2....0..1..1....0..0..0
		

Crossrefs

Column 3 is A105163(n+1)

Formula

Empirical: Columns of T(n,k) are a polynomial in n of degree k*(k-1)/2.
For elements increasing by 0..d instead of 0..1, columns are a polynomial of degree d*k*(k-1)/2.