A202767 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A202873; by antidiagonals.
1, -1, 1, -11, 1, 1, -25, 70, -1, 1, -39, 335, -354, 1, 1, -53, 796, -3243, 1599, -1, 1, -67, 1453, -11396, 25654, -6813, 1, 1, -81, 2306, -27557, 129202, -177146, 28156, -1, 1, -95, 3355, -54470, 407695, -1239902, 1111042, -114524
Offset: 1
Examples
The 1st principal submatrix (ps) of A202873 is {{1}} (using Mathematica matrix notation), with p(1)=1-x and zero-set {1}. ... The 2nd ps is {{1,3},{3,7}}, with p(2)=1-11x+x^2 and zero-set {0.091..., 10.908...}. ... The 3rd ps is {{1,3,7},{3,10,24},{7,24,59}}, with p(3)=1-25x+70x^2-x^3 and zero-set {0.045..., 0.312..., 69.641...}. ... Top of the array: 1...-1 1...-11....1 1...-25...70.....-1 1...-39..335...-354...1
Links
- S.-G. Hwang, Cauchy's interlace theorem for eigenvalues of Hermitian matrices, American Mathematical Monthly 111 (2004) 157-159.
- A. Mercer and P. Mercer, Cauchy's interlace theorem and lower bounds for the spectral radius, International Journal of Mathematics and Mathematical Sciences 23, no. 8 (2000) 563-566.
Crossrefs
Cf. A202873.
Programs
-
Mathematica
f[k_] := -1 + 2^k; U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]]; L[n_] := Transpose[U[n]]; F[n_] := CharacteristicPolynomial[L[n].U[n], x]; c[n_] := CoefficientList[F[n], x] TableForm[Flatten[Table[F[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A202767 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments