A202785 Number of 3 X 3 0..n arrays with row and column sums equal.
14, 87, 340, 1001, 2442, 5215, 10088, 18081, 30502, 48983, 75516, 112489, 162722, 229503, 316624, 428417, 569790, 746263, 964004, 1229865, 1551418, 1936991, 2395704, 2937505, 3573206, 4314519, 5174092, 6165545, 7303506, 8603647
Offset: 1
Keywords
Examples
Some solutions for n=7: ..3..2..1....3..5..5....0..6..2....0..7..5....4..2..1....5..6..0....1..6..1 ..2..0..4....5..6..2....2..1..5....6..1..5....3..2..2....0..4..7....5..2..1 ..1..4..1....5..2..6....6..1..1....6..4..2....0..3..4....6..1..4....2..0..6
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Robert Israel, Proof of empirical formula for A202785
- Wikipedia, Ehrhart polynomial
Crossrefs
Cf. A202784.
Programs
-
Maple
seq((3/10)*n^5 + (3/2)*n^4 + (7/2)*n^3 + (9/2)*n^2 + (16/5)*n + 1, n=1..30); # Robert Israel, May 02 2019
Formula
Empirical: a(n) = (3/10)*n^5 + (3/2)*n^4 + (7/2)*n^3 + (9/2)*n^2 + (16/5)*n + 1.
Conjectures from Colin Barker, Jun 01 2018: (Start)
G.f.: x*(7 - 2*x + x^2)*(2 + x + 4*x^2 - x^3) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
Empirical formula verified (see link): Robert Israel, May 02 2019
Comments