A202797 Number of n X 3 binary arrays with every one adjacent to another one horizontally or vertically.
4, 36, 250, 1718, 11988, 83518, 581518, 4049700, 28202318, 196400270, 1367728548, 9524845126, 66330898142, 461927514284, 3216857242006, 22402152254494, 156008298702684, 1086439775514766, 7565952552767646, 52689195775528564
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0..0..0....0..1..0....0..0..1....0..1..1....0..1..1....0..0..1....0..0..0 ..1..0..0....1..1..1....0..0..1....0..1..0....0..0..1....0..0..1....1..0..0 ..1..0..0....0..0..1....1..0..1....1..0..0....1..1..0....0..1..0....1..1..1 ..0..1..1....0..1..0....1..1..1....1..1..1....0..0..0....0..1..1....1..1..1 ..0..1..0....0..1..1....0..1..0....0..0..1....0..1..1....0..0..1....0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A202802.
Formula
Empirical: a(n) = 7*a(n-1) -3*a(n-2) +19*a(n-3) -3*a(n-4) +25*a(n-5) +24*a(n-6) -22*a(n-7) -16*a(n-8).
Empirical g.f.: 2*x*(2 + 4*x + 5*x^2 + 20*x^4 + 7*x^5 - 16*x^6 - 8*x^7) / (1 - 7*x + 3*x^2 - 19*x^3 + 3*x^4 - 25*x^5 - 24*x^6 + 22*x^7 + 16*x^8). - Colin Barker, Jun 01 2018
Comments