cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A202796 Number of n X 2 binary arrays with every one adjacent to another one horizontally or vertically.

Original entry on oeis.org

2, 10, 36, 126, 454, 1632, 5854, 21010, 75412, 270662, 971438, 3486624, 12513958, 44914250, 161203204, 578579694, 2076599286, 7453190368, 26750489166, 96011055010, 344596415668, 1236802258678, 4439047411742, 15932330156576
Offset: 1

Views

Author

R. H. Hardin, Dec 24 2011

Keywords

Comments

Column 2 of A202802.

Examples

			Some solutions for n=5:
..0..1....0..0....0..1....1..0....0..0....1..0....1..1....0..1....0..1....1..0
..0..1....1..0....1..1....1..0....0..0....1..0....1..1....1..1....1..1....1..1
..1..1....1..1....1..1....1..1....0..1....0..0....1..0....0..0....1..0....0..1
..1..1....0..1....1..0....1..0....0..1....0..1....0..1....1..0....0..0....1..0
..1..0....1..1....1..0....1..0....0..0....0..1....1..1....1..1....0..0....1..0
		

Crossrefs

Cf. A202802.

Formula

Empirical: a(n) = 3*a(n-1) + a(n-2) + 4*a(n-3).
Empirical g.f.: 2*x*(1 + 2*x + 2*x^2) / (1 - 3*x - x^2 - 4*x^3). - Colin Barker, Feb 20 2018

A202797 Number of n X 3 binary arrays with every one adjacent to another one horizontally or vertically.

Original entry on oeis.org

4, 36, 250, 1718, 11988, 83518, 581518, 4049700, 28202318, 196400270, 1367728548, 9524845126, 66330898142, 461927514284, 3216857242006, 22402152254494, 156008298702684, 1086439775514766, 7565952552767646, 52689195775528564
Offset: 1

Views

Author

R. H. Hardin, Dec 24 2011

Keywords

Comments

Column 3 of A202802.

Examples

			Some solutions for n=5:
..0..0..0....0..1..0....0..0..1....0..1..1....0..1..1....0..0..1....0..0..0
..1..0..0....1..1..1....0..0..1....0..1..0....0..0..1....0..0..1....1..0..0
..1..0..0....0..0..1....1..0..1....1..0..0....1..1..0....0..1..0....1..1..1
..0..1..1....0..1..0....1..1..1....1..1..1....0..0..0....0..1..1....1..1..1
..0..1..0....0..1..1....0..1..0....0..0..1....0..1..1....0..0..1....0..1..0
		

Crossrefs

Cf. A202802.

Formula

Empirical: a(n) = 7*a(n-1) -3*a(n-2) +19*a(n-3) -3*a(n-4) +25*a(n-5) +24*a(n-6) -22*a(n-7) -16*a(n-8).
Empirical g.f.: 2*x*(2 + 4*x + 5*x^2 + 20*x^4 + 7*x^5 - 16*x^6 - 8*x^7) / (1 - 7*x + 3*x^2 - 19*x^3 + 3*x^4 - 25*x^5 - 24*x^6 + 22*x^7 + 16*x^8). - Colin Barker, Jun 01 2018

A202798 Number of nX4 binary arrays with every one adjacent to another one horizontally or vertically.

Original entry on oeis.org

7, 126, 1718, 22946, 311144, 4217066, 57127796, 773948962, 10485233258, 142050385280, 1924452482144, 26071860295098, 353213105139604, 4785216541174944, 64828561353680056, 878276318748587482
Offset: 1

Views

Author

R. H. Hardin Dec 24 2011

Keywords

Comments

Column 4 of A202802

Examples

			Some solutions for n=4
..0..0..1..1....1..1..0..0....1..1..1..0....0..1..1..0....0..0..0..0
..1..0..0..1....0..0..0..0....0..0..1..1....0..0..1..0....1..0..1..1
..1..1..1..0....0..0..1..1....1..1..1..0....0..0..0..0....1..1..0..0
..0..1..0..0....0..0..1..0....1..0..1..0....0..0..1..1....0..1..1..0
		

Formula

Empirical: a(n) = 13*a(n-1) -7*a(n-2) +181*a(n-3) +123*a(n-4) +940*a(n-5) +545*a(n-6) -2084*a(n-7) -1964*a(n-8) +1512*a(n-9) +1984*a(n-10) -512*a(n-11) -1024*a(n-12)

A202799 Number of nX5 binary arrays with every one adjacent to another one horizontally or vertically.

Original entry on oeis.org

12, 454, 11988, 311144, 8222576, 217145076, 5730640104, 151245101550, 3991784606164, 105354316048660, 2780593210008194, 73387575404296206, 1936901875857360748, 51120219046394982056, 1349204535780755578282
Offset: 1

Views

Author

R. H. Hardin Dec 24 2011

Keywords

Comments

Column 5 of A202802

Examples

			Some solutions for n=3
..1..1..1..0..0....0..0..1..1..1....1..1..1..1..1....1..1..0..0..1
..0..0..0..0..1....0..1..1..1..0....0..1..0..1..1....1..0..1..0..1
..1..1..1..1..1....0..0..1..1..1....1..1..1..0..1....1..1..1..0..0
		

Formula

Empirical: a(n) = 27*a(n-1) -82*a(n-2) +1720*a(n-3) -876*a(n-4) +36142*a(n-5) +36267*a(n-6) +228084*a(n-7) +1329202*a(n-8) -3356034*a(n-9) -15601554*a(n-10) +6682402*a(n-11) +62222338*a(n-12) +8454105*a(n-13) -144765880*a(n-14) -62367040*a(n-15) +251331688*a(n-16) +212121408*a(n-17) -212078096*a(n-18) -315914880*a(n-19) -123060608*a(n-20) -12403456*a(n-21) +277981952*a(n-22) +391540736*a(n-23) +190742528*a(n-24) +156106752*a(n-25) +22544384*a(n-26) +16777216*a(n-27)

A202800 Number of nX6 binary arrays with every one adjacent to another one horizontally or vertically.

Original entry on oeis.org

21, 1632, 83518, 4217066, 217145076, 11168045764, 573985849362, 29502860015392, 1516477156642474, 77948189988273490, 4006599407114049916, 205942439718841896456, 10585607796890601624858, 544108792600210068202950
Offset: 1

Views

Author

R. H. Hardin Dec 24 2011

Keywords

Comments

Column 6 of A202802

Examples

			Some solutions for n=3
..0..1..0..1..1..0....1..1..1..0..0..0....1..1..0..1..1..1....0..0..1..1..1..1
..1..1..1..1..1..0....0..1..0..0..0..1....0..1..0..1..1..1....1..0..1..0..1..1
..0..1..1..0..1..1....1..1..1..0..1..1....1..1..0..1..0..0....1..0..0..0..0..0
		

Formula

Empirical: a(n) = 50*a(n-1) -185*a(n-2) +12651*a(n-3) +6423*a(n-4) +1075408*a(n-5) +3259685*a(n-6) +21586628*a(n-7) +76542794*a(n-8) -2812955781*a(n-9) -9282864749*a(n-10) +76466631235*a(n-11) +267889215760*a(n-12) -1134901643747*a(n-13) -4335336001609*a(n-14) +10870807935088*a(n-15) +46906211644574*a(n-16) -69760341260668*a(n-17) -364808849169564*a(n-18) +285890091915548*a(n-19) +2095267330255204*a(n-20) -582913492790936*a(n-21) -8842390435967576*a(n-22) -589993582990688*a(n-23) +25633677190161424*a(n-24) +6313554877821056*a(n-25) -35770558600735552*a(n-26) -82722026192384*a(n-27) -46013612995587072*a(n-28) -82921963670853632*a(n-29) +185344286677962752*a(n-30) -36821534264311808*a(n-31) +193374756561289216*a(n-32) +778031675832008704*a(n-33) -391301125804916736*a(n-34) +2056655992384389120*a(n-35) -1044699927222943744*a(n-36) +2643514994808848384*a(n-37) -1117027627006164992*a(n-38) +2008203304609251328*a(n-39) -663346463232753664*a(n-40) +962288728338857984*a(n-41) -230985402763182080*a(n-42) +273382571130224640*a(n-43) -34339947158700032*a(n-44) +36028797018963968*a(n-45)

A202801 Number of nX7 binary arrays with every one adjacent to another one horizontally or vertically.

Original entry on oeis.org

37, 5854, 581518, 57127796, 5730640104, 573985849362, 57451983566596, 5751152791799586, 575720459404558054, 57632366330207426276, 5769273546129978953106, 577531776161009664812728
Offset: 1

Views

Author

R. H. Hardin Dec 24 2011

Keywords

Comments

Column 7 of A202802

Examples

			Some solutions for n=2
..1..1..1..1..0..1..0....1..1..0..1..1..1..1....0..1..1..0..1..1..1
..1..1..0..0..1..1..0....1..0..0..0..0..1..0....0..1..1..1..0..1..0
		

Formula

Empirical: a(n) = 104*a(n-1) -1509*a(n-2) +112845*a(n-3) -549886*a(n-4) +45197781*a(n-5) +95444961*a(n-6) +6012871096*a(n-7) +72065190780*a(n-8) -403254005060*a(n-9) +9378286042322*a(n-10) -135166611568332*a(n-11) -4746618772655462*a(n-12) +16750296332970178*a(n-13) +641491247046472171*a(n-14) -581930862785744235*a(n-15) -49991110179300244938*a(n-16) -29003429867913627250*a(n-17) +2663525173868076038093*a(n-18) +4406874281358922155730*a(n-19) -104106044932848817474919*a(n-20) -265867660496172612065470*a(n-21) +3086402955290440664148659*a(n-22) +10540986401841044742983153*a(n-23) -70218232510533503479549216*a(n-24) -307245955700207265201868114*a(n-25) +1212383133878529390600801963*a(n-26) +6866570110100841851876314510*a(n-27) -15012333083873389551099016781*a(n-28) -118647402020016868727278957170*a(n-29) +106189463033142182852842165411*a(n-30) +1540897216831050214590543591279*a(n-31) +262440887754236012862617053019*a(n-32) -13518096646340292601685166108359*a(n-33) -16546338300471680962140597351151*a(n-34) +47765424006768451986599376467562*a(n-35) +163806463080913659915154514986896*a(n-36) +536742812326340611899510970845584*a(n-37) +174526235539143097611558927527224*a(n-38) -7192121633047695793784665688583428*a(n-39) -16569774194220947979434206188542512*a(n-40) -9658267954384872764093864664281664*a(n-41) +30492528686215262217595198610977008*a(n-42) +504791992429513047738159990183241728*a(n-43) +1419342473741519645007077832134996928*a(n-44) +1810893328523449947797125818346819840*a(n-45) +2939088926460403031996171321206102784*a(n-46) -20255724084329967352729754992289424384*a(n-47) -76166005674682479831612723739141989376*a(n-48) -248974601455563952176848405805301055488*a(n-49) -833285621196686767464861469941415133184*a(n-50) -1432216467613919967438181586797726040064*a(n-51) -4838081916750279091797721685991860797440*a(n-52) -5659868179140363210847357530923549261824*a(n-53) -20023519482187352823106338155735205019648*a(n-54) -17515257336613623462898975747336808169472*a(n-55) -65823364170541006525696256612951623991296*a(n-56) -46182151861365787992372020009592554520576*a(n-57) -182036527532763187313317889358353720672256*a(n-58) -110029209391952592118575457814138150977536*a(n-59) -436431560916332316824590059924242749718528*a(n-60) -241511299748660190480314157721498329022464*a(n-61) -917505073346049248415494765944004728061952*a(n-62) -475975119549559417737600877672639894650880*a(n-63) -1693953068177868014953753685104003909681152*a(n-64) -796970850496592309974098530741040487333888*a(n-65) -2745442504517809978504228087185186750464000*a(n-66) -1046183648475320719686894778767580143288320*a(n-67) -3909025680872225469371202938869553389633536*a(n-68) -898371131098940347182035562985602666201088*a(n-69) -4877748294732680516617956367536404276707328*a(n-70) -43824310362633631315277670432123964620800*a(n-71) -5239896787436795576038527727301419557978112*a(n-72) +1439252103318783464525519935652231001407488*a(n-73) -4591012120739998918497608388365609007579136*a(n-74) +2847398570181152993261160773330306003369984*a(n-75) -2832238516884816605240810917639664235970560*a(n-76) +3174244463978844415817485725828191526846464*a(n-77) -543530661497759783558184679811516318351360*a(n-78) +2000756614600189176010604576772800565477376*a(n-79) +1136274369703102707634236269797065936076800*a(n-80) +155595201809921575561018733891128588763136*a(n-81) +1432418898106254927833056855924444357459968*a(n-82) -903502390892343797605592922760949031501824*a(n-83) +712152927879935508741944815907733589983232*a(n-84) -647766834040807798710347906921632590987264*a(n-85) -10580943093993172125729497713400086528000*a(n-86) +25589869503210297642199620181684268302336*a(n-87) -192468445333440565687645170928842795122688*a(n-88) +198411972776975000023937066469840421650432*a(n-89) -62491854930608536517928183832769369997312*a(n-90) +32246263876992604929208474909958222118912*a(n-91) +11623490675369533416857801107769053413376*a(n-92) -24710732671609117654526284507339967954944*a(n-93) +3398835985222029887015034653136841080832*a(n-94) +2945569238659373574354836445581243580416*a(n-95) -680564733841876926926749214863536422912*a(n-96)
Showing 1-6 of 6 results.