This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202805 #57 Jan 29 2025 09:29:24 %S A202805 6,12,25,48,94,184,363,719,1430,2851,5691,11371,22728,45443,90870, %T A202805 181724,363429,726839,1453658,2907295,5814566,11629107 %N A202805 a(n) is the largest k in an n_nacci(k) sequence (Fibonacci(k) for n=2, tribonacci(k) for n=3, etc.) such that n_nacci(k) >= 2^(k-n-1). %C A202805 From _Frank M Jackson_, Jul 02 2023: (Start) %C A202805 Define the n_nacci sequence, basically row n in A092921, with an offset of 0, n_nacci(k) = 0 for 0 <= k <= n-2 and n_nacci(n-1) = 1. Thereafter, n_nacci(k) for k >= n continues as the sum of its previous n terms. %C A202805 This means that n_nacci(k) = 2^(k-n) for n <= k <= 2n-1. In the limit as n tends to infinity the n_nacci sequence after an initial large set of zeros followed by 1 has successive terms of ascending powers of 2. %C A202805 As the n-acci constants, (A001622, A058265, A086088, A103814,...) are smaller than 2, for each n_nacci sequence there is a largest k such that n_nacci(k) >= 2^(k-n-1). (End) %e A202805 For n=3, the tribonacci sequence is 0,0,1,1,2,4,7,...,149,274,504,... and the 13th term is 504 < 512 so a(n)=12 because 274 is greatest term >= 2^(12-3-1) = 256. %p A202805 nAcci := proc(n,k) %p A202805 option remember ; %p A202805 if k <= n-2 then %p A202805 0; %p A202805 elif k = n-1 then %p A202805 1; %p A202805 else %p A202805 add( procname(n,i),i=k-n..k-1) ; %p A202805 end if; %p A202805 end proc: %p A202805 A202805 := proc(n) %p A202805 local k ; %p A202805 for k from n do %p A202805 if nAcci(n,k) < 2^(k-n-1) then %p A202805 return k-1; %p A202805 end if; %p A202805 end do: %p A202805 end proc: %p A202805 for n from 2 do %p A202805 print(n,A202805(n)) ; %p A202805 end do: # _R. J. Mathar_, Mar 11 2024 %t A202805 fib[n_, m_] := (Block[{nacci}, (Do[nacci[g]=0, {g, 0, m - 2}]; %t A202805 nacci[m-1]=1;nacci[p_] := (nacci[p]=Sum[nacci[h], {h, p-m, p-1}]);nacci[n])]); %t A202805 crossover[q_] := (Block[{$RecursionLimit=Infinity}, (k=0;While[fib[k+q+1, q]>=2^k, k++];k+q)]); %t A202805 Table[crossover[j], {j, 2, 12}] %o A202805 (Python) %o A202805 def nacci(n): # generator of n_nacci terms %o A202805 window = [0]*(n-1) + [1] %o A202805 yield from window %o A202805 while True: %o A202805 an = sum(window) %o A202805 yield an %o A202805 window = window[1:] + [an] %o A202805 def a(n): %o A202805 pow2 = 1 %o A202805 for k, t in enumerate(nacci(n)): %o A202805 if k > n + 1: pow2 <<= 1 %o A202805 if 0 < t < pow2: return k-1 %o A202805 print([a(n) for n in range(2, 12)]) # _Michael S. Branicky_, Jan 29 2025 %Y A202805 Cf. A000045, A000073, A000078. %K A202805 nonn,more %O A202805 2,1 %A A202805 _Frank M Jackson_, Dec 24 2011 %E A202805 Edited by _N. J. A. Sloane_, May 20 2023 %E A202805 There seems to be an error in the Comment. See "History" tab. - _N. J. A. Sloane_, Jun 24 2023 %E A202805 Removed musing about what might define "complete" sequences. - _R. J. Mathar_, Mar 11 2024 %E A202805 a(17)-a(23) from _Michael S. Branicky_, Jan 29 2025