cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202810 Number of nX6 nonnegative integer arrays with each row and column increasing from zero by 0, 1 or 2.

This page as a plain text file.
%I A202810 #7 Jun 02 2025 07:28:44
%S A202810 1,21,881,43483,1874539,60758779,1420586923,24496279000,324818660255,
%T A202810 3450301922085,30392148400009,228299392737693,1495681511952100,
%U A202810 8702151387743758,45631559860107036,218282278670309658
%N A202810 Number of nX6 nonnegative integer arrays with each row and column increasing from zero by 0, 1 or 2.
%C A202810 Column 6 of A202812
%H A202810 R. H. Hardin, <a href="/A202810/b202810.txt">Table of n, a(n) for n = 1..210</a>
%F A202810 Empirical: a(n) = (1277297393/8289151869130970582384640000000)*n^30 + (1277297393/61401124956525708017664000000)*n^29 + (297094789/218819386084962100838400000)*n^28 + (7816341527/139600890389978873856000000)*n^27 + (3679424300173/2268514468837156700160000000)*n^26 + (215648816287/6204484017332394393600000)*n^25 + (132644124511021/234529495855164508078080000)*n^24 + (8516618187653/1206427447814632243200000)*n^23 + (452342167635389/6708509606841090048000000)*n^22 + (35730373202707/73570956727261593600000)*n^21 + (1251259179315059/485568314399926517760000)*n^20 + (1361341525505047/134880087333312921600000)*n^19 + (145094222851897967/3964119313133371392000000)*n^18 + (268476765510956759/1292009257613839564800000)*n^17 + (559775202052160947/410402940653807861760000)*n^16 + (455829405206713/78297264318873600000)*n^15 + (51349681364745987967/4152886899473055744000000)*n^14 + (321563032543235723/14197903929822412800000)*n^13 + (893790815923908266251/3823850475899421327360000)*n^12 + (151050517333396775323/128749174272707788800000)*n^11 + (1383273494122866878269/1572306939103380480000000)*n^10 - (3754718962122134858933/758700491249885184000000)*n^9 + (222617923041595086359/13219781286929817600000)*n^8 + (4614812385253095736069/53858368206010368000000)*n^7 - (647903194163313269910577/9189584075150519040000000)*n^6 - (1229353439820407340721/20421297944778931200000)*n^5 + (158913710606056931851/161220773248254720000)*n^4 - (11747119919207627/13357730209824000)*n^3 - (29007604104881443/31085582031504000)*n^2 + (443720625949/155272637520)*n - 1
%e A202810 Some solutions for n=4
%e A202810 ..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
%e A202810 ..0..0..0..0..2..2....0..0..1..1..2..2....0..0..0..0..0..1....0..0..0..0..2..2
%e A202810 ..0..0..1..2..3..3....0..1..1..2..2..2....0..1..2..2..2..2....0..0..1..2..2..4
%e A202810 ..0..2..2..3..4..4....0..2..3..4..4..4....0..1..2..3..3..4....0..1..2..2..4..5
%K A202810 nonn
%O A202810 1,2
%A A202810 _R. H. Hardin_ Dec 24 2011